首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
卫星测高反演海洋重力异常的精度分析   总被引:1,自引:0,他引:1  
针对卫星测高技术中由于大地水准面取值受各项误差影响导致精度较低的问题,该文联合多源多代卫星测高数据,基于逆Vening-Meinesz公式确定海洋重力异常,进一步对海洋重力异常进行内部和外部检核。结果表明,卫星测高反演的海洋重力异常与EGM2008比较的精度为±7.116mgal;与船测重力异常比较的精度为7.417mgal,这与国际上对测高重力异常与船测重力异常比较精度一致。  相似文献   

2.
3.
One-year average satellite altimetry data from the Exact Repeat Missions (ERM) of GEOSAT have been used to determine marine gravity disturbances in the Labrador Sea region using the inverse Hotine approach with FFT techniques. The derived satellite gravity information has been compared to shipboard gravity as well as gravity information derived by least-squares collocation (LSC), GEMT3 and OSU91A geopotential models in the Orphan Knoll area. The RMS and mean differences between satellite and shipboard gravity disturbances are about 8.0 and 2.8 mGal, respectively. There is no significantly difference between the results obtained using FFT and LSC.  相似文献   

4.
该文介绍了GRACE和GOCE重力卫星在地球重力场模型以及局部变化等方面的研究成果,介绍了卫星测高的检核与校验、全球和局部海平面变化监测、内陆湖和水库水位变化监测等方面的研究进展,对综合利用卫星重力、卫星测高以及合成孔径雷达差分干涉测量(DInSAR)等技术方法监测冰川和冰盖变化的成果进行了介绍,重点介绍了南极冰盖变化监测的研究成果。对综合卫星重力、卫星测高、DInSAR、GNSS/水准、GNSS等多种技术在冰川冰盖、局部形变监测等方面的应用进行了展望。  相似文献   

5.
利用多颗卫星的测高数据,经共线平均及交叉点平差,建立浙江深海海域2.5′×2.5′格网分辨率的平均海面高模型,在扣除海面地形影响后得到海域的大地水准面起伏,并与EGM2008所得计算结果进行对比;利用移去-恢复技术及SVR方法,联合验潮站GPS/水准数据与EGM2008大地水准面模型,计算浙江近岸海域大地水准面起伏;最终建立浙江海域2.5′×2.5′格网分辨率的大地水准面模型。  相似文献   

6.
The geoid gradient over the Darling Fault in Western Australia is extremely high, rising by as much as 38 cm over only 2 km. This poses problems for gravimetric-only geoid models of the area, whose frequency content is limited by the spatial distribution of the gravity data. The gravimetric-only version of AUSGeoid98, for instance, is only able to resolve 46% of the gradient across the fault. Hence, the ability of GPS surveys to obtain accurate orthometric heights is reduced. It is described how further gravity data were collected over the Darling Fault, augmenting the existing gravity observations at key locations so as to obtain a more representative geoid gradient. As many of the gravity observations were collected at stations with a well-known GRS80 ellipsoidal height, the opportunity arose to compute a geoid model via both the Stokes and the Hotine approaches. A scheme was devised to convert free-air anomaly data to gravity disturbances using existing geoid models, followed by a Hotine integration to geoid heights. Interestingly, these results depended very weakly upon the choice of input geoid model. The extra gravity data did indeed improve the fit of the computed geoid to local GPS/Australian Height Datum (AHD) observations by 58% over the gravimetric-only AUSGeoid98. While the conventional Stokesian approach to geoid determination proved to be slightly better than the Hotine method, the latter still improved upon the gravimetric-only AUSGeoid98 solution, supporting the viability of conducting gravity surveys with GPS control for the purposes of geoid determination. AcknowledgementsThe author would like to thank Will Featherstone, Ron Gower, Ron Hackney, Linda Morgan, Geoscience Australia, Scripps Oceanographic Institute and the three anonymous reviewers of this paper. This research was funded by the Australian Research Council.  相似文献   

7.
 The downward continuation of the harmonic disturbing gravity potential, derived at flight level from discrete observations of airborne gravity by the spherical Hotine integral, to the geoid is discussed. The initial-boundary-value approach, based on both the direct and inverse solution to Dirichlet's problem of potential theory, is used. Evaluation of the discretized Fredholm integral equation of the first kind and its inverse is numerically tested using synthetic airborne gravity data. Characteristics of the synthetic gravity data correspond to typical airborne data used for geoid determination today and in the foreseeable future: discrete gravity observations at a mean flight height of 2 to 6 km above mean sea level with minimum spatial resolution of 2.5 arcmin and a noise level of 1.5 mGal. Numerical results for both approaches are presented and discussed. The direct approach can successfully be used for the downward continuation of airborne potential without any numerical instabilities associated with the inverse approach. In addition to these two-step approaches, a one-step procedure is also discussed. This procedure is based on a direct relationship between gravity disturbances at flight level and the disturbing gravity potential at sea level. This procedure provided the best results in terms of accuracy, stability and numerical efficiency. As a general result, numerically stable downward continuation of airborne gravity data can be seen as another advantage of airborne gravimetry in the field of geoid determination. Received: 6 June 2001 / Accepted: 3 January 2002  相似文献   

8.
卫星测高与卫星重力对洋流的研究   总被引:2,自引:0,他引:2  
卫星测高与卫星重力的发展为进一步研究洋流提供了前所未有的机遇。本文从EGM 96 ,GGM0 1与未来的GOCE任务获取的高精度高分辨率海洋大地水准面的角度对洋流的研究方法与可行性进行了分析  相似文献   

9.
Antarctica is the only continent that suffers major gaps in terrestrial gravity data coverage. To overcome this problem and to close these gaps as well as to densify the global satellite gravity field solutions, the International Association of Geodesy (IAG) Commission Project 2.4 “Antarctic Geoid” was set into action. This paper reviews the current situation concerning the gravity field in Antarctica. It is shown that airborne geophysical surveys are the most promising tools to gain new gravity data in Antarctica. In this context, a number of projects to be carried out during the International Polar Year 2007/2008 will contribute to this goal. To demonstrate the feasibility of the regional geoid improvement in Antarctica, we present a case study using gravity and topography data of the southern Prince Charles Mountains, East Antarctica. During the processing, the remove–compute– restore (RCR) technique and least-squares collocation (LSC) were applied. Adding signal parts of up to 6 m to the global gravity field model that was used as a basis, the calculated regional quasigeoid reveals the dominant features of bedrock topography in that region, namely the graben structure of the Lambert glacier system. The accuracy of the improved regional quasigeoid is estimated to be at the level of 15 cm.  相似文献   

10.
The problem of improving the geoid from satellite altimetry is formulated and studied within the scope of geophysical fluid dynamics. The oceanic levelling is defined by analogy to the astrogeodetic levelling and it is used to determine the sea surface topography as a function of current velocity, atmospheric pressure and viscosity. Simulating strong currents like the Gulf Stream or the Kuroshio the numerical treatment of the oceanic levelling shows that the sea surface topography can come up to an order of magnitude of1–2 m, whereby the results depend on latitude and slightly on the actual pressure conditions.  相似文献   

11.
邢乐林  李建成  刘晓玲 《测绘科学》2006,31(5):48-49,53
研究了利用沿轨大地水准面梯度数据计算海洋垂线偏差的最小二乘法,首先对ENVISAT测高数据进行各项地球物理改正得到近似测高大地水准面,然后计算沿轨大地水准面的梯度,接着用最小二乘法计算格网垂线偏差东西分量和南北分量的平均值。最后,用该方法计算了南中国海区域及其邻近海域(4°N~25°N,104°E~120°E)的5′×5′垂线偏差南北分量和东西分量,其精度优于7″,并与EGM96模型计算的垂线偏差值进行了比较,证明了该方法的有效性。  相似文献   

12.
卫星测高技术的发展使得大空间尺度探测海冰成为可能,海冰干舷高是反演海冰厚度的关键参量,获取精确的海冰干舷高对海冰探测及了解全球气候变化均具有重要的作用。本文基于近3年获取的CryoSat-2卫星SAR模式测高资料,在60°N—88°N纬度带内的北极海域通过设定阈值筛选可用的观测数据,并在此基础上计算2015—2017年间月平均海冰干舷高,最后通过IceBridge航飞数据的时空匹配验证了本文获取的干舷高计算结果是可靠的。  相似文献   

13.
14.
J. Ågren 《Journal of Geodesy》2004,78(4-5):314-332
One important application of an Earth Gravity Model (EGM) is to determine the geoid. Since an EGM is represented by an external-type series of spherical harmonics, a biased geoid model is obtained when the EGM is applied inside the masses in continental regions. In order to convert the downward-continued height anomaly to the corresponding geoid undulation, a correction has to be applied for the analytical continuation bias of the geoid height. This technique is here called the geoid bias method. A correction for the geoid bias can also be utilised when an EGM is combined with terrestrial gravity data, using the combined approach to topographic corrections. The geoid bias can be computed either by a strict integral formula, or by means of one or more terms in a binomial expansion. The accuracy of the lowest binomial terms is studied numerically. It is concluded that the first term (of power H2) can be used with high accuracy up to degree 360 everywhere on Earth. If very high mountains are disregarded, then the use of the H2 term can be extended up to maximum degrees as high as 1800. It is also shown that the geoid bias method is practically equal to the technique applied by Rapp, which utilises the quasigeoid-to-geoid separation. Another objective is to carefully consider how the combined approach to topographic corrections should be interpreted. This includes investigations of how the above-mentioned H2 term should be computed, as well as how it can be improved by a correction for the residual geoid bias. It is concluded that the computation of the combined topographic effect is efficient in the case that the residual geoid bias can be neglected, since the computation of the latter is very time consuming. It is nevertheless important to be able to compute the residual bias for individual stations. For reasonable maximum degrees, this can be used to check the quality of the H2 approximation in different situations.Acknowledgement The author would like to thank Prof. L.E. Sjöberg for several ideas and for reading two draft versions of the paper. His support and constructive remarks have improved its quality considerably. The valuable suggestions from three unknown reviewers are also appreciated.  相似文献   

15.
The spherical harmonic coefficients of the Earth’s gravitational potential are conveniently determined by integration of gravity data or potential data (derived from satellite altimetry) over a sphere. The major problem of such a method is that the data, given on the non-spherical surface of the Earth, must be reduced to the sphere. A new integral formula over the surface of the Earth is derived. With this formula improved first order topographic corrections to the spherical formulas are obtained.  相似文献   

16.
Calibration of satellite gradiometer data aided by ground gravity data   总被引:1,自引:0,他引:1  
Parametric least squares collocation was used in order to study the detection of systematic errors of satellite gradiometer data. For this purpose, simulated data sets with a priori known systematic errors were produced using ground gravity data in the very smooth gravity field of the Canadian plains. Experiments carried out at different satellite altitudes showed that the recovery of bias parameters from the gradiometer “measurements” is possible with high accuracy, especially in the case of crossing tracks. The mean value of the differences (original minus estimated bias parameters) was relatively large compared to the standard deviation of the corresponding second-order derivative component at the corresponding height. This mean value almost vanished when gravity data at ground level were combined with the second-order derivative data set at satellite altitude. In the case of simultaneous estimation of bias and tilt parameters from ∂2 T/∂z 2“measurements”, the recovery of both parameters agreed very well with the collocation error estimation. Received: 10 October 1996 / Accepted 25 May 1998  相似文献   

17.
The topographic bias is defined as the error/bias committed by continuing the external gravity field inside the topographic masses by a harmonic function. We study the topographic bias given by a digital terrain model defined by a spherical template, and we show that the topographic bias is given only by the potential of an inner-zone cap, and it equals the bias of the Bouguer shell, independent of the size of the cap. Then we study the effect on the real Earth by decomposing its topography into a template, and we show also in this case that the topographic bias is that of the Bouguer shell, independent of the shape of the terrain. Finally, we show that the topographic potential of the terrain at the geoid can be determined to any precision by a Taylor expansion outside the Earth’s surface. The last statement is demonstrated by a Taylor expansion to fourth order.  相似文献   

18.
Spectral analysis of data noise is performed in the context of gravity field recovery from inter-satellite ranging measurements acquired by the satellite gravimetry mission GRACE. The motivation of the study is two-fold: (i) to promote a further improvement of GRACE data processing techniques and (ii) to assist designing GRACE follow-on missions. The analyzed noise realizations are produced as the difference between the actual GRACE inter-satellite range measurements and the predictions based on state-of-the-art force models. The exploited functional model is based on the so-called “range combinations,” which can be understood as a finite-difference analog of inter-satellite accelerations projected onto the line-of-sight connecting the satellites. It is shown that low-frequency noise is caused by limited accuracy of the computed GRACE orbits. In the first instance, it leads to an inaccurate estimation of the radial component of the inter-satellite velocities. A large impact of this component stems from the fact that it is directly related to centrifugal accelerations, which have to be taken into account when the measured range-accelerations are linked with inter-satellite accelerations. Another effect of orbit inaccuracies is a miscalculation of forces acting on the satellites (particularly, the one described by the zero-degree term of the Earth’s gravitational field). The major contributors to the noise budget at high frequencies (above 9?mHz) are (i) ranging sensor errors and (ii) limited knowledge of the Earth’s static gravity field at high degrees. Importantly, we show that updating the model of the static field on the basis of the available data must be performed with a caution as the result may not be physical due to a non-unique recovery of high-degree coefficients. The source of noise in the range of intermediate frequencies (1–9?mHz), which is particularly critical for an accurate gravity field recovery, is not fully understood yet. We show, however, that it cannot be explained by inaccuracies in background models of time-varying gravity field. It is stressed that most of the obtained results can be treated as sufficiently general (i.e., applicable in the context of a statistically optimal estimation based on any functional model).  相似文献   

19.
人造地球卫星在地球引力场中运动,可以探测地球重力场的长波信息。随着GPS技术的发展,星载GPS技术日趋成熟,因此由星载GPS相位数据确定地球重力场模型是当前国际地学研究的热点之一。本文给出了确定地球重力场模型中的星载GPS星地相位双差观测量,阐述了Cowell II数值轨道积分公式,导出了参数估计中星地双差观测量的偏导数,利用分块Bayes最小二乘参数估计地球引力场位系数等有关参数。  相似文献   

20.
Satellite gravity missions, such as CHAMP, GRACE and GOCE, and airborne gravity campaigns in areas without ground gravity will enhance the present knowledge of the Earths gravity field. Combining the new gravity information with the existing marine and ground gravity anomalies is a major task for which the mathematical tools have to be developed. In one way or another they will be based on the spectral information available for gravity data and noise. The integration of the additional gravity information from satellite and airborne campaigns with existing data has not been studied in sufficient detail and a number of open questions remain. A strategy for the combination of satellite, airborne and ground measurements is presented. It is based on ideas independently introduced by Sjöberg and Wenzel in the early 1980s and has been modified by using a quasi-deterministic approach for the determination of the weighting functions. In addition, the original approach of Sjöberg and Wenzel is extended to more than two measurement types, combining the Meissl scheme with the least-squares spectral combination. Satellite (or geopotential) harmonics, ground gravity anomalies and airborne gravity disturbances are used as measurement types, but other combinations are possible. Different error characteristics and measurement-type combinations and their impact on the final solution are studied. Using simulated data, the results show a geoid accuracy in the centimeter range for a local test area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号