首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The interaction effects of different applied ratios of a hydrophilic polymer (Superab A200) (0, 0.2, 0.6% w/w) under various soil salinity levels (initial salinity, 4 and 8 ms/cm) were evaluated on available water content (AWC), biomass, and water use efficiency for corn grown in loamy sand and sandy clay loam soils. The results showed that the highest AWC was measured at the lowest soil salinity. The application of 0.6% w/w of the polymer at the lowest salinity level increased the AWC by 2.2 and 1.2 times greater than those of control in the loamy sand and sandy clay loam soils, respectively. The analysis of variance of data showed that the effect of salinity was significant on biomass and water use efficiency of corn in the loamy sand and sandy clay loam soils. The highest amounts of these traits were measured in soils with the lowest salinity level. Application of polymer at the rate of 0.6% in the loamy sand soil and at the rate of 0.2% in the sandy clay loam soil resulted in the highest aerial and root biomass and water use efficiency for corn. At these polymer rates the amounts of water use efficiency for corn were 2.6 and 1.7 times greater than those of control in the loamy sand and sandy clay loam soils, respectively. Thus, the use of hydrophilic polymer in soils especially in the sandy soils increases soil water holding capacity, yield, and water use efficiency of plant. On the other hand, decreases the negative effect of soil salinity on plant and helps for irrigation projects to succeed in arid and semi‐arid areas.  相似文献   

2.
液相渗透率描述了岩石的渗流特性,是评价储层与预测油气产能的重要参数.液相渗透率是指盐水溶液在岩石孔隙中流动且与岩石孔隙表面黏土矿物发生物理化学作用时所测得的渗透率;液相渗透率的实验测量条件更加接近实际地层泥质砂岩的条件,使得液相渗透率更能反映地层条件下泥质砂岩的渗流特性;然而,现有的液相渗透率评价模型较少,且模型未能揭示液相渗透率与溶液矿化度之间的关系.基于此,开展了液相渗透模型推导与计算方法研究;文中首先将岩石等效为毛管束模型,推导建立了液相渗透率与比表面、喉道曲折度、总孔隙度、黏土束缚水孔隙度等参数之间的关系;其次,根据岩石物理体积模型,推导建立了黏土束缚水孔隙度与阳离子交换容量、溶液矿化度等参数的关系;最终,将黏土束缚水孔隙度引入液相渗透率计算公式,建立了基于总孔隙度、阳离子交换容量、溶液矿化度、比表面、喉道曲折度等参数的液相渗透率理论计算模型.液相渗透率计算模型与两组实验数据均表明,液相渗透率随阳离子交换容量的增大而降低,随溶液矿化度的增大而增大.然而,液相渗透率理论计算模型的实际应用中喉道曲折度、比表面等参数求取困难,直接利用理论模型计算液相渗透率受到限制.在分析液相渗透率与孔隙渗透率模型的基础上,建立了液相渗透率与空气渗透率之间的转换模型,形成了利用转化模型计算液相渗透率的新方法.为进一步验证液相渗透率与空气渗透率转化模型的准确性,基于两组实验数据,利用转换模型计算了液相渗透率;液相渗透率计算结果与岩心测量液相渗透率实验结果对比显示,液相渗透率计算结果与实际岩心测量结果吻合较好,文中建立的液相渗透率与空气渗透率转化模型合理可靠.  相似文献   

3.
复电阻率测井在识别油水层的能力上优于常规电阻率测井,然而储层岩石复电阻率特性的微观机理还没有统一完整的解释和数学模拟方法,致使复电阻率测井技术的开发缺乏足够的理论基础.本文基于孔隙介质Pride电震耦合理论,结合谐变信号激励下渗流场与电流场的耦合理论,推导出一级近似条件下的Pride电震耦合理论.采用格林函数方法建立了一维电震波场的波动方程及其解.构造了双电极法测量储层岩石复电阻率的物理模型和数学模型,从理论上阐明了岩石复电阻率频散特性的微观机制与电震效应的关系,定量分析了储层岩石复电阻率频散特性的影响因素.数学模拟结果表明:储层岩石复电阻率的频散现象是在电震快纵波和电震慢纵波的共同作用下,由孔隙介质中的电渗流机制形成的;储层岩石的复电阻率随孔隙度的增大而减小,随渗透率的增大而增大,地层水矿化度的增加或阳离子交换量的增大使得同频率的复电阻率减小.慢纵波界面极化频率受孔隙度、渗透率和地层弹性模量的影响较大,而快纵波界面极化频率受地层弹性模量的影响较大.  相似文献   

4.
不同泥质分布形式泥质砂岩导电规律实验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
本文利用人工制作的不同含量分散泥质和层状泥质砂岩岩心样品,测量不同矿化度和不同含油饱和度的岩心电阻率,从实验角度研究了不同泥质分布形式和含量的岩心导电规律,结果表明,泥质分布形式或含量不同,则泥质砂岩导电规律不同.基于层状泥质与分散泥质砂岩的并联导电实验规律,以及分散粘土和地层水混合物的导电规律可用HB电阻率方程描述,建立了考虑泥质分布形式影响的泥质砂岩电阻率模型.通过1组不同泥质分布形式泥质砂岩人造岩心实验数据的测试,表明该模型可以描述分散泥质砂岩、层状泥质砂岩和混合泥质砂岩地层的导电规律.分散泥质,层状泥质,人造岩样,实验测量,并联导电,HB方程,电阻率模型  相似文献   

5.
This study examined the effects of different soil texture configurations on water movement and solute transport to provide a reliable scientific basis for the application of negative‐pressure irrigation (NPI) technology. HYDRUS‐2D was used to analyse water movement and solute transport under NPI. The main results are as follows: (a) HYDRUS‐2D can be used to simulate water movement and solute transport under NPI, as there was good agreement between the simulated and measured values for water contents, NaCl concentrations, cumulative water infiltration, and wetting distances in the horizontal and vertical directions; the Nash–Sutcliffe efficiency coefficients were in the range of 0.94–0.97. (b) Layered soils have obvious effects on water movement under NPI. With the emitter position in the loam layer, when a coarse texture of loamy sand was present below the loam layer (namely, L‐LS), irrigation water accumulated in the topsoil, and this led to an increase in evaporation compared with the homogeneous loam profile. However, fine texture silty loam or silty clay loam layers beneath the loam layer (namely, L‐SiL or L‐SiCL, respectively) was more conducive to water infiltration into the lower layer, and this increased the amount of water infiltration and simultaneously reduced the surface evaporation effectively. (c) Layered soils have obvious effects on solute transport under NPI, and salt accumulation will readily occur in the clay‐rich soil layer at the interface. The maximum soil salt accumulation of L‐LS occurred above the soil interface between the two soil layers with a value of 21.80 g/kg; however, for L‐SiCL and L‐SiL, the maximum salt accumulation occurred below the soil interface between the two soil layers, with values of 23.80 g/kg and 20.08 g/kg, respectively. (d) Interlayered soils showed remarkable changes in the water infiltration characteristics and salt‐leaching intensities under NPI, and the properties for the soil profile with a silty loam interlayer were better than those for the soil profile with a silty clay loam interlayer. The soil profile with a loamy sand interlayer had the lowest amount of water infiltration, which resulted in reductions of the salt‐leaching intensities. Thus, NPI is clearly not suitable for loamy sand soil. Overall, the results demonstrated that soil texture configurations affected water movement and solute transport under NPI. Therefore, careful consideration should be given to the use of NPI to achieve target soil water and solution conditions and reduce water loss.  相似文献   

6.
It is known that the time‐domain induced‐polarization decay curve for a shaly sand reservoir depends on the pore structure of the reservoir, and this curve can be used to estimate permeability, which is a determining factor in making production decisions in the petroleum industry. Compared with NMR logging tools, induced polarization has several advantages, such as a deep depth of investigation and a high signal‐to‐noise ratio. The purpose of this paper is to establish an appropriate model using induced polarization to estimate the permeability. The curve can be modelled as a weighted superposition of exponential relaxations. The plot of weight versus the relaxation time constant is defined as the relaxation time spectrum. Induced‐polarization decay‐curve measurements were performed on 123 samples from the Daqing oilfield using a four‐electrode technique. A singular‐value decomposition method was used to transform the induced‐polarization decay data into a spectrum. Different models to estimate the permeability were discussed. The results of the research indicate that the induced‐polarization measurements greatly improve the statistical significance of permeability correlations. Compared with the traditional forms, AφC and AFC, the forms, ATBφC and ATBFC, have lower error factors, where T, Φ and F are the geometric mean time constant of the induced‐polarization relaxation time spectrum, the porosity and the resistivity formation factor, respectively, and A, B and C are constants. The mean time constant is the decisive parameter in the permeability estimation and it is not completely independent of the resistivity formation factor. The additional use of the porosity and the resistivity formation factor leads to an appreciable improvement. It is concluded that this new model will make it possible to estimate the permeability of a shaly sand reservoir downhole.  相似文献   

7.
Under the ANDRA Meuse/Haute Marne underground research laboratory scientific programme, two boreholes (EST204 and EST205) were drilled to a depth of 510 m for the purposes of scientific characterisation. Twenty-nine core samples were taken in borehole EST205 every 3 m between 422 and 504 m depth. Physical property measurements (water content, porosity, density, specific surface), geochemical analyses (major and trace elements, cation exchange capacity [CEC] and surface cation occupancy, leaching anions, redox state, organic matter concentration), and a semi-quantitative mineralogical study were conducted on the samples.As the rocks are in a reduced state, the core samples were stored under nitrogen immediately after drilling. All the steps of the sampling and of the characterisation are done with a research of limitation of the oxidation to obtain representative samples of the in situ conditions.The top of the formation is more carbonate-rich, with interbedded clayey layers and carbonate rock. The formation is more homogeneous in its central section with a clay mineral concentration of 45–50%, which corresponds to a maximum of flooding within the area. In the upper part of this section, micas and mixed-layer illite/smectite R0 dominate, whereas in the lower part of the section we find an abrupt transition to mixed-layer illite/smectite R1 associated with kaolinite.A statistical analysis, including the data of major and trace elements with the semi-quantitative mineralogy, enabled the identification of some mineralogical traps for trace elements. The values of cation occupancy at the surface of the clay minerals provided a good image of the pore water chemistry; pore water is in equilibrium with the clay surfaces. Leaching experiments revealed the pore water salinity and provided profiles of Cl and Br concentrations. Cl/Br values in the centre of the formation are close to the present-day seawater ratio, which could indicate a seawater origin of the pore water. Some measurements of total reduced capacity, provide quantified results of the reduced state of the rock.Processing the data on water content, helium and petroleum pycnometry enabled calculation of total rock porosity and gave an uncertainty range for this value. Finally, the high BET(N2) specific surfaces are consistent with the clayey nature of the rock.  相似文献   

8.
GPR study of pore water content and salinity in sand   总被引:5,自引:0,他引:5  
High‐resolution studies of hydrological problems of the near‐surface zone can be better accomplished by applying ground‐probing radar (GPR) and geoelectrical techniques. We report on GPR measurements (500 and 900 MHz antennae) which were carried out on a sorted, clean sand, both in the laboratory and at outdoor experimental sites. The outdoor sites include a full‐scale model measuring 5 × 3 × 2.4 m3 and a salinity site measuring 7.0 × 1.0 × 0.9 m3 with three buried sand bodies saturated with water of various salinities. Our studies investigate the capability of GPR to determine the pore water content and to estimate the salinity. These parameters are important for quantifying and evaluating the water quality of vadose zones and aquifers. The radar technique is increasingly applied in quantifying soil moisture but is still rarely used in studying the problems of water salinity and quality. The reflection coefficient at interfaces is obtained from the amplitude spectrum in the frequency and time domains and is confirmed by 1D wavelet modelling. In addition, the GPR velocity to a target at a known depth is determined using techniques of two‐way traveltime, CMP semblance analysis and fitting an asymptotic diffraction curve. The results demonstrate that the reflection coefficient increases with increasing salinity of the moisture. These results may open up a new approach for applications in environmental problems and groundwater prospecting, e.g. mapping and monitoring of contamination and evaluating of aquifer salinity, especially in coastal areas with a time‐varying fresh‐water lens. In addition, the relationship between GPR velocity and water content is established for the sand. Using this relationship, a subsurface velocity distribution for a full‐scale model of this sand is deduced and applied for migrated radargrams. Well‐focused diffractions separate single small targets (diameter of 2–3 cm, at a depth of 20–180 cm and a vertical interval of 20 cm). The results underscore the high potential of GPR for determining moisture content and its variation, flow processes and water quality, and even very small bodies inside the sand or soil.  相似文献   

9.
The effect of super absorbent polyacrylate (SAP) hydrogel amendment to different soil types on plant available water (PAW), evapotranspiration and survival of Eucalyptus grandis, Eucalyptus citriodora, Pinus caribaea, Araucaria cunninghamii, Melia volkensii, Grevillea robusta, Azadirachta indica, Maesopsis eminii and Terminalia superba was investigated. The seedlings were potted in 3 kg size polythene bags filled with sand, loam, silt loam, sandy loam and clay soils, amended at 0 (control), 0.2 and 0.4% w/w hydrogel. The tree seedlings were allowed to grow normally with routine uniform watering in a glass house set up for a period of eight weeks, after which they were subjected to drought conditions by not watering any further. The 0.4% hydrogel amendment significantly (p < 0.05) increased the PAW by a factor of about three in sand, two fold in silt loam and one fold in sandy loam, loam and clay soils compared to the control. Similarly, the addition of either 0.2 or 0.4% hydrogel to the five soil types resulted in prolonged tree survival compared to the controls. Araucaria cunninghammi survived longest at 153 days, while Maesopsis eminii survived least (95 days) in sand amended at 0.4% after subjection to desiccation. Evapotranspiration was reduced in eight of the nine tree species grown in sandy loam, loam, silt loam and clay soils amended at 0.4% hydrogel. It is probable that soil amendment with SAP decreased the hydraulic soil conductivity that might reduce plant transpiration and soil evaporation.  相似文献   

10.
With the advancement in oil exploration,producible oil and gas are being found in low resistivity reservoirs,which may otherwise be erroneously thought as water zones from their resistivity.However,the evaluation of low resistivity reservoirs remains difficult from log interpretation.Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay,laminated shale,conductive matrix grains,microscopic capillary pores and high saline water,a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations.Herein,a generalized effective medium resistivity model has been proposed for low resistivity reservoirs,based on experimental measurements on artificial low resistivity shaly sand samples,symmetrical anisotropic effective medium theory for resistivity interpretations,and geneses and conductance mechanisms of low resistivity reservoirs.By analyzing effects of some factors on the proposed model,we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses.Also,shale distribution largely affects water saturation predicted by the model.Resistivity index decreases as fraction and conductivity of laminated shale,or fraction of dispersed clay,or conductivity of rock matrix grains increases.Resistivity index decreases as matrix percolation exponent,or percolation rate of capillary bound water increases,and as percolation exponent of capillary bound water,or matrix percolation rate,or free water percolation rate decreases.Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water,dispersed clay,microscopic capillary pores,laminated shale and conductive matrix grains,and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.  相似文献   

11.
Improvements in the joint inversion of seismic and marine controlled source electromagnetic data sets will require better constrained models of the joint elastic‐electrical properties of reservoir rocks. Various effective medium models were compared to a novel laboratory data set of elastic velocity and electrical resistivity (obtained on 67 reservoir sandstone samples saturated with 35 g/l brine at a differential pressure of 8 MPa) with mixed results. Hence, we developed a new three‐phase effective medium model for sandstones with pore‐filling clay minerals based on the combined self‐consistent approximation and differential effective medium model. We found that using a critical porosity of 0.5 and an aspect ratio of 1 for all three components, the proposed model gave accurate model predictions of the observed magnitudes of P‐wave velocity and electrical resistivity and of the divergent trends of clean and clay‐rich sandstones at higher porosities. Using only a few well‐constrained input parameters, the new model offers a practical way to predict in situ porosity and clay content in brine saturated sandstones from co‐located P‐wave velocity and electrical resistivity data sets.  相似文献   

12.
剪切波速是区别土动力学和静力学的重要参数,其影响因素包括土层埋深、颗粒形状、颗粒比重、压缩模量、孔隙比、含水率和密度等,其中土层埋深对剪切波速的变化影响较大。本文搜集整理了华北地区10个城市的928个钻孔共10703个测点的剪切波速与土层埋深之间的经验统计关系,探讨华北地区剪切波速随深度变化的特征,并从岩性条件、沉积环境等方面分析其原因。通过对比分析,给出了华北地区黏性土和砂类土剪切波速随深度变化的最佳拟合经验统计关系,并进行实例验证,所得结果可为缺乏数据的区域提供一定参考。  相似文献   

13.
This study devises a new analytical relationship to determine the porosity of water-saturated soils at shallow depth using seismic compressional and shear wave velocities. Seismic refraction surveys together with soil sample collection were performed in selected areas containing water-saturated clay–silt, sand and gravely soils. Classification of clay–silt, sand and gravel dense soils provided the coefficient of experimental equation between the data sets, namely, Poisson's ratio, shear modulus and porosity values. This study presents a new analytical relationship between Poisson's ratio and shear modulus values, which are obtained from seismic velocities and porosity values of water-saturated material computed from water content and grain densities, which are determined by laboratory analysis of disturbed samples. The analytical relationship between data sets indicates that when the shear modulus of water-saturated loose soil increases, porosity decreases logarithmically. If shear modulus increases in dense or solid saturated soils, porosity decreases linearly.  相似文献   

14.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

15.
Using a Simple Soil Column Method to Evaluate Soil Phosphorus Leaching Risk   总被引:3,自引:0,他引:3  
The impacts of soil P leaching on water eutrophication have widely been concerned. However, there is no dependable method to quantitatively estimate the P leaching risk of soils. In this study, a simple soil column method was developed using two calcareous Fluvisols, silt loam and loam. The soil column was 20 cm in length and 5 cm in diameter, and distilled water was continuously supplied from the top. The volume and dissolved reactive P (DRP) concentrations of leachate were measured. Results showed that DRP concentrations in leachate increased slowly for the low soil Olsen‐P levels but rapidly for the high Olsen‐P levels. According to these two‐phase changes in the DRP versus soil Olsen‐P contents, the thresholds of P leaching risk were estimated to be 41.1 and 62.3 mg P kg?1 (Olsen‐P) for silt loam and loam, respectively. The P leaching intensity of soils increased by 3‐ to 540‐fold if the soil Olsen‐P contents accumulated from 6.6 to 155.5 mg P kg?1. The outcomes derived from this study regarding the determination of P leaching threshold and intensity by the soil column method also need a further verification on more soils with a wide range of physical and chemical properties.  相似文献   

16.
The use of a prototype near infrared reflectance meter for estimating the water content of soil is described. The instrument, developed from one used for estimating the water content of forage is based on the measurement of reflectance of infrared light emitted at wavelengths of 1450 nm, a strong water absorption band, and 1300 nm a weak water absorption band. Calibration curves of reflectance and reflectance ratio versus moisture content for pure sands and sand/clay mixes are presented. Problems associated with the measurement of moisture content using this technique on swelling soils are highlighted. The use of a modified form of this instrument for estimating soil moisture status in the field is discussed.  相似文献   

17.
Abstract. A fully documented program to represent one-dimensional unsaturated flow in soil is described. The program is based on a Douglas-Jones finite-difference implicit method to solve the Richards equation. An implicit linearization scheme is used to estimate the hydraulic conductivity and specific moisture capacity functions. Predicted moisture content profiles compared with two Galerkin finite-element solutions and field observations on a Panoche clay loam soil show very good agreement.  相似文献   

18.
Marine sediment samples were collected in the Broughton Archipelago, British Columbia, to assess the use of a geochemical normalization technique in the identification of a chemical tracer of aquaculture waste material. Zinc and copper were suggested as tracers of feed pellets, while copper was considered an indicator of anti-foulant agents used on netpen systems. The sediment samples were analyzed for carbon, nitrogen, organic matter, water, trace-element, and free sulfide concentrations, and sediment grain-size distribution. Sediment texture analysis revealed a wide range of substrate types from sand to silty loam categories. Strong relationships between sediment texture, sediment porosity, and organic content were observed across both near-field and far-field stations. Excess zinc and copper sediment concentrations, identified using a lithium-normalization technique, were restricted to near-field sampling stations (0 and 30m from netpen systems). The relationships between these metal tracers and organic content and sulfur concentrations were explored to account for variations in sediment concentrations of zinc and copper.  相似文献   

19.
砂砾岩储层测井评价研究   总被引:1,自引:0,他引:1  
砂砾岩储层岩性复杂、非均质性强,储层间非渗透性隔层类型多,储层基质孔隙度有时很低,从而使测井资料准确划分有效储层有很大的难度;砂砾岩体储层母岩类型变化大,岩石骨架参数很难确定,电阻率测量受岩石骨架、粘土含量和孔隙结构影响严重,反映储层孔隙流体性质的信息弱,使储层流体性质难以判断,油、气、干层界限的电性特征极不明显.通过核磁共振和井壁微电阻扫描成像测井,可以直观观察到岩石成分和粒径的变化,通过T2谱分布直观显示核磁测量井段的孔径分布,计算出各种类型孔隙度和渗透率参数,为砂砾岩有效划分储层和测井评价提供了可靠的依据.  相似文献   

20.
A large weighing lysimeter was installed at Yucheng Comprehensive Experimental Station, north China, for evapotranspiration and soil‐water–groundwater exchange studies. Features of the lysimeter include the following: (i) mass resolution equivalent to 0·016 mm of water to accurately and simultaneously determine hourly evapotranspiration, surface evaporation and groundwater recharge; (ii) a surface area of 3·14 m2 and a soil profile depth of 5·0 m to permit normal plant development, soil‐water extraction, soil‐water–groundwater exchanges, and fluctuations of groundwater level; (iii) a special supply–drainage system to simulate field conditions of groundwater within the lysimeter; (iv) a soil mass of about 30 Mg, including both unsaturated and saturated loam. The soil consists mainly of mealy sand and light loam. Monitoring the vegetated lysimeter during the growing period of winter wheat, from October 1998 through to June 1999, indicated that during the period groundwater evaporation contributed 16·6% of total evapotranspiration for a water‐table depth from 1·6 m to 2·4 m below ground surface. Too much irrigation reduced the amount of upward water flow from the groundwater table, and caused deep percolation to the groundwater. Data from neutron probe and tensiometers suggest that soil‐water‐content profiles and soil‐water‐potential profiles were strongly affected by shallow groundwater. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号