首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文基于海洋环流模式模拟的高分辨率欧拉场,利用拉格朗日追踪方法,评估了印尼贯穿流(ITF)对印度洋的热量贡献。通过计算ITF水体在印度洋的传输路径及伴随的温度变化来获取ITF水体在印度洋的热量传输过程。模拟结果表明ITF进入印度洋后主要向西流动并在到达马达加斯加后分叉,进入南、北印度洋。热收支分析表明ITF在北印度洋吸收0.41 PW热量,在南印度洋释放0.56 PW热量;这两个过程相互补偿,导致ITF对整个印度洋的净加热贡献并不显著,只有0.15 PW。进一步的检查ITF离开印度洋的出口(跨过34°S),结果表明ITF主要随着位于西边界的奥古拉斯流和位于东边界的利文流离开印度洋。约89%的ITF水体沿着西边界离开印度洋,其余的11%主要沿着东边界离开印度洋;前者对整个印度洋的净加热贡献为0.10 PW,后者的净加热贡献为0.05 PW。  相似文献   

2.
印尼贯穿流与南海贯穿流的年代际变化特征及机制   总被引:5,自引:0,他引:5  
通过绕岛环流理论和SODA(Simple Ocean Data Assimilation)数据对印尼贯穿流(ITF)和南海贯穿流(即吕宋海峡水交换,LST)在1976年气候突变前后的特征进行分析。结果表明,1976年后吕宋海峡水交换体积输送(LSTT)异常增大,而印尼贯穿流体积输送(ITFT)异常减少。吕宋海峡东部东风分量和南海内部的北风分量的局地驱动是导致LSTT在1976年后增加的主要因素,南海内部异常北风分量对LSTT增加的贡献能够达到53%;而赤道太平洋的西风分量则是导致ITFT在1976年后减少的主要因素,其贡献大约为61%。1976年后15°N左右的NEC(North Equatorial Current)体积输送异常增强,但总NEC体积输送异常减弱。KC(Kuroshio Current)体积输送异常增强,而MC(Mindanao Current)、NECC(North Equatorial Countercurrent)、SEC(South EquatorialCurrent)体积输送异常减弱。赤道西太平洋由风场变化通过Sverdrup动力过程产生的异常气旋性环流阻碍了太平洋水体向印度洋的输入。  相似文献   

3.
文章基于2004年1月~2006年11月的"国际努加登沙层结与输运"(international Nusantara stratification and transport,INSTANT)计划以及2006年11月~2011年7月的"印度尼西亚贯穿流观测"(monitoring the Indonesian throughflow,MITF)计划的实测数据,从长时间序列研究印度尼西亚贯穿流的变化。在望加锡海峡中,印度尼西亚贯穿流的周期信号分布非常丰富,涵盖潮汐、季节内、季节和年际信号。对于季节变化,东南季风期间温跃层深度上最大南向流速约为1.0m·s-1,而西北季风期间最大南向流速约为0.8m·s-1。印度尼西亚贯穿流的年际变化与尼诺3.4区指数(NINO3.4)呈正相关,最大相关系数大约在NINO 3.4前1~2个月;水深150m以上,印度尼西亚贯穿流与偶极子模态指数(dipole mode index,DMI)呈负相关,200m以下呈正相关,在时间上较DMI滞后约1~2个月。季节变化的经验正交分解(empirical orthogonal function,EOF)前2个模态方差的总贡献率为97%,其中第一模态为65%,第二模态为32%;年际变化的EOF前2个模态的方差贡献率为90%,其中第一模态为51%,第二模态为39%。季节变化的第二模态和年际变化的第一模态表征赤道印度洋开尔文波模态,该模态的空间结构在垂向会发生相位反转;季节变化的第一模态和年际变化的第二模态表征赤道太平洋罗斯贝波(Rossby waves)的厄尔尼诺与南方涛动(El Ni?o and southern oscillation,ENSO)模态,其垂向的空间结构变化比较一致。  相似文献   

4.
Property structure and variability of the Indonesian Throughflow Water in the major outflow straits (Lombok, Ombai and Timor) are revised from newly available data sets and output from a numerical model. Emphasis is put on the upper layers of the Indonesian Throughflow that impacts the heat and freshwater fluxes of the South Equatorial Current in the Indian Ocean. During the April–June monsoon transition the salinity maximum signature of the North Pacific thermocline water is strongly attenuated. This freshening of the thermocline layer is more intense in Ombai and is related to the supply of fresh near-surface Java Sea water that is drawn eastward by surface monsoon currents and subject to strong diapycnal mixing. The freshwater exits to the Indian Ocean first through Lombok Strait and later through Ombai and Timor, with an advective phase lag of between one and five months. Because of these phase lags, the fresher surface and thermocline water is found in the southeast Indian Ocean from the beginning of the monsoon transition period in April through until the end of the southeast monsoon in September, a much longer time period than previously estimated.  相似文献   

5.
The influences of the large-scale interannual variations in the eastern Indian Ocean on the variability of the Indonesian throughflow are investigated by using an ocean general circulation model, driven by the ERS satellite winds from July 1992 to June 1997. The empirical orthogonal function (EOF) analysis of the simulated surface dynamic height variability captures two dominant modes on an interannual time scale, which are quite consistent with the available observations. The first mode indicates large amplitude in the western tropical Pacific and has a strong relation to the El Niño events, while the second EOF exhibits the large amplitude in the eastern Indian Ocean. The simulated net Indonesian throughflow shows an interannual variation of amplitude of about 15 Sv, with large transport from the Pacific to the Indian Ocean during 1994/95 and small transport during 1992 and 1997. It turns out that the net throughflow variation shows a high correlation with the second EOF mode (r = 0.51) for the whole five-year simulation. On the other hand, the correlation with the first mode is rather low (r = ?0.07). However, the relative importance of the EOF modes to the throughflow variability changes with time. The upper-layer transport above a depth of 230 m in the Indonesian archipelago is also affected by the second mode. The difference in the upper-layer transport across 1°S and 110°E generates warm water convergence/divergence with a magnitude of 4 Sv within the Indonesian Seas on the interannual time scale, which shows good correspondence with sea surface temperature variation averaged over the Indonesian archipelago.  相似文献   

6.
So far, large uncertainties of the Indonesian throughflow(ITF) reside in the eastern Indonesian seas, such as the Maluku Sea and the Halmahera Sea. In this study, the water sources of the Maluku Sea and the Halmahera Sea are diagnosed at seasonal and interannual timescales and at different vertical layers, using the state-of-the-art simulations of the Ocean General Circulation Model(OGCM) for Earth Simulator(OFES). Asian monsoon leaves clear seasonal footprints on the eastern Indonesian seas. Consequently, the subsurface waters(around 24.5σ_θ and at ~150 m) in both the Maluku Sea and the Halmahera Sea stem from the South Pacific(SP) during winter monsoon, but during summer monsoon the Maluku Sea is from the North Pacific(NP), and the Halmahera Sea is a mixture of waters originating from the NP and the SP. The monsoon impact decreases with depth, so that in the Maluku Sea, the intermediate water(around 26.8σ_θ and at ~480 m) is always from the northern Banda Sea and the Halmahera Sea water is mainly from the SP in winter and the Banda Sea in summer. The deep waters(around27.2σ_θ and at ~1 040 m) in both seas are from the SP, with weak seasonal variability. At the interannual timescale,the subsurface water in the Maluku Sea originates from the NP/SP during El Ni?o/La Ni?a, while the subsurface water in the Halmahera Sea always originates from the SP. Similar to the seasonal variability, the intermediate water in Maluku Sea mainly comes from the Banda Sea and the Halmahera Sea always originates from the SP. The deep waters in both seas are from the SP. Our findings are helpful for drawing a comprehensive picture of the water properties in the Indonesian seas and will contribute to a better understanding of the ocean-atmosphere interaction over the maritime continent.  相似文献   

7.
除印度尼西亚贯穿流之外,南海贯穿流也是太平洋向印度洋输送海水的重要分支。尽管基于数值模拟等方法的研究早已指出,南海分支在太平洋-印度洋洋际交换中有重要作用,但是直到2007年之前,南海分支在卡里马塔海峡处的观测几乎是空白。本文回顾了自2007年起,通过中印尼合作项目"南海-印度尼西亚海水交换及对鱼类季节性洄游的影响(SITE)"在卡里马塔海峡开展的近十年观测,以及在此基础上进一步开展的"印度尼西亚贯穿流海域水交换、内波和混合观测及其生态效应(TIMIT)"观测项目,并对SITE和TIMIT观测取得的成果进行了总结。  相似文献   

8.
Observational evidence indicates that in the northern North Atlantic, especially in the Labrador Sea, almost the whole column of the ocean water is fresher, and colder in late 20th century than in 1950–1960s. Here we analyze a four-member ensemble of the 20th century simulations from a coupled climate model to examine the possible causes for these observed changes. The model simulations resemble the observed changes in the northern North Atlantic. The simulated results show that a decreased meridional freshwater divergence and an increased meridional heat divergence associated with a weaker thermohaline circulation in the North Atlantic are the primary causes for the freshening and cooling in the northern North Atlantic. The increased precipitation less evaporation tends to enforce the freshening, but the reduced sea ice flux into this region tends to weaken it. On the other hand, the surface warming induced by a higher atmospheric CO2 concentration tends to heat up the northern North Atlantic, but is overcome by the cooling from increased meridional heat divergence.  相似文献   

9.
用Argo温盐资料估计印度尼西亚贯穿流多年平均地转输送   总被引:1,自引:0,他引:1  
利用Argo浮标资料,估计了2003—2007年期间印度尼西亚贯穿流(ITF)出口处114.5οE断面上层(0—1000m)的地转流,并与WOA05资料进行对比。在114.5οE断面上9.5ο—18.5οS之间,依据Argo资料计算的上层(0—1000m)地转流年平均输送为4.2Sv(1 Sv = 106m3.s-1),比依据WOA05资料计算的流量大0.5Sv左右,与前人对IX1断面的估算接近。依据Argo资料计算的ITF的季节变化也与WOA05比较一致,最大输送都出现在7月份,可以达到10Sv,而冬季二者差异较大。比较了盐度资料的差异以及114.5οE断面南侧缺测对估计ITF地转流输送的影响,发现盐度资料的改善可以改进对ITF地转输送量的估计,而断面南侧的缺测对ITF年平均输送的影响较小。因此,Argo资料可以作为监测ITF输送量的一种有效手段,特别是用于年平均流量的研究。  相似文献   

10.
In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawl-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas transport/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South China Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (-2.7 ± 1.1) × 10 6 m3/s, (-0.30 ± 0.11) PW, (-0.18 ± 0.07) × 106m3/s and from May to September 2008 (summer) is (1.2 ± 0.6) × 106m3/s, (0.14 ± 0.03) PW, (0.12 ± 0.04) × 106m3/s and for the entire record from December 2007 to October 2008 is (-0.5 ± 1.9) × 10 6 m3/s, (-0.05 ± 0.22) PW, (-0.01 ± 0.15) × 106m3/s (negative/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.  相似文献   

11.
利用Argo资料和《世界海洋数据集2001版》(WOD01)温盐历史资料,通过对代表性等位势面上盐度分布的分析,探讨了次表层和中层等不同层次上印尼贯通流(ITF)的起源与路径问题.分析结果表明,ITF的次表层水源主要来自北太平洋,中层水源地既包括北太平洋、南太平洋,同时也不能排除有印度洋的可能性.在印度尼西亚海域西部,ITF的次表层和中层水源分别为北太平洋热带水(NPTW)和中层水(NPIW),经苏拉威西海、望加锡海峡到达弗洛勒斯海,层次越深特征越明显.在印度尼西亚海域东部,发现哈马黑拉-新几内亚水道附近存在次表层强盐度锋面,阻隔了南太平洋热带水(SPTW)由此进入ITF海域;中层水具有高于NPIW和来自南太平洋的南极中层水(AAIW)的盐度值,既可能是AAIW和SPTW在当地发生剧烈垂直混合而形成,也可能是来自印度洋的AAIW向北延伸进入ITF的结果.  相似文献   

12.
Flow of winter-transformed Pacific water into the Western Arctic   总被引:1,自引:0,他引:1  
The dynamics of the flow of dense water through Barrow Canyon is investigated using data from a hydrographic survey in summer 2002. The focus is on the winter-transformed Bering water—the highest volumetric mode of winter water in the Chukchi Sea—which drains northward through the canyon in spring and summer. The transport of this water mass during the time of the survey was 0.2–0.3 Sv. As the layer flowed from the head of the canyon to the mouth, it sank, decelerated, and stretched. Strong cyclonic relative vorticity was generated on the seaward side of the jet, which compensated for the stretching. This adjustment was incomplete, however, in that it did not extend across the entire current, possibly because of internal mixing due to shear instabilities. The resulting vorticity structure of the flow at the canyon mouth was conducive for baroclinic instability and eddy formation. Multiple eddies of winter-transformed Bering water were observed along the Chukchi–Beaufort shelfbreak. Those to the west of Barrow Canyon were in the process of being spawned by the eastward-flowing shelfbreak current emanating from Herald Canyon, while the single eddy observed to the east originated from the Barrow Canyon outflow. It is argued that such an eddy formation is a major source of the ubiquitous cold-core anti-cyclones observed historically throughout the Canada Basin. Implications for the ventilation of the upper halocline of the Western Arctic are discussed.  相似文献   

13.
Based on monthly mean Simple Ocean Data Assimilation(SODA) products from 1958 to 2007,this study analyzes the seasonal and interannual variability of the North Equatorial Current(NEC) bifurcation latitude and the Indonesian Throughflow(ITF) volume transport. Further,Empirical Mode Decomposition(EMD) method and lag-correlation analysis are employed to reveal the relationships between the NEC bifurcation location,NEC and ITF volume transport and ENSO events. The analysis results of the seasonal variability show that the annual mean location of NEC bifurcation in upper layer occurs at 14.33°N and ITF volume transport has a maximum value in summer,a minimum value in winter and an annual mean transport of 7.75×106 m3/s. The interannual variability analysis indicates that the variability of NEC bifurcation location can be treated as a precursor of El Ni?o. The correlation coefficient between the two reaches the maximum of 0.53 with a time lag of 2 months. The ITF volume transport is positively related with El Ni?o events with a maximum coefficient of 0.60 by 3 months. The NEC bifurcation location is positively correlated with the ITF volume transport with a correlation coefficient of 0.43.  相似文献   

14.
使用1994~2000年NCEP风应力资料驱动全球变网格环流模式,得出印度尼西亚贯穿流(ITF)流量的年际变化时间序列。模拟结果显示:ITF流量的年际变化与太平洋和印度洋的年际变化均有密切联系,在El Ni~↑no年流量偏低,在La Ni~↑no年流量偏高;ITF流量的年际变化与Ni~↑no 3区指数呈显著负相关,Ni~↑no 3区指数超前ITF流量2个月时负相关系数达到最大,为-0.81;与南方涛动指数(SOI)明显呈正相关,SOI超前ITF流量2个月时相关系数达到最大,为0.72;与印度洋偶极子(IOD)指数负相关,IOD指数超前ITF流量3个月时负相关系数达到最大,为-0.74。  相似文献   

15.
LICOM模拟的南海贯穿流及其对南海上层热含量的影响   总被引:1,自引:0,他引:1  
利用SODA(Simple Ocean Data Assimilation)数据、XBT(Expendable Bathythermograph)观测数据和绕岛环流理论(island rule)诊断计算结果评估了一个涡相容(eddy-permitting)全球海洋环流模式——LICOM对南海贯穿流及南海上层热含量的模拟能力,同时利用模式输出探讨了南海贯穿流对南海上层热含量的影响。NEC(North Equatorial Current)分叉的垂向结构、南海内区环流的季节和吕宋海峡体积输送的年际变化等分析结果都表明,LICOM能获取西北太平洋-印尼海域环流和南海贯穿流的合理模拟结果。模式模拟的南海上层热含量季节变化与观测及同化数据都表现出良好的一致性,尤其在南海内区。相关分析表明,吕宋海峡热输送主要控制着南海内区上层的热含量变化,两者呈显著负相关,这进一步证实了南海贯穿流作为一支冷平流调制着南海上层热含量变化的重要事实。  相似文献   

16.
Geostrophic transport of the Indonesian Throughflow (ITF) is estimated from optimally-interpolated temperature data along a frequently repeated expendable bathythermograph (XBT) section between Fremantle, Australia and Sunda Strait, Indonesia and from two historical temperature-salinity (T/S) relationship products, CSIRO Atlas for Regional Seas (CARS) and Levitus (1982). The annual mean ITF geostrophic transport relative to 400 m during 1984–2001 is estimated to be 4.6 Sv using the CARS T/S relationship, which is about 20% higher than that found using the Levitus T/S relationship. This transport increment is due to the fact that the CARS T/S relationship, which incorporates more recent hydrographic data, better resolves the low-salinity signature of the ITF water. Isothermal averaging in the CARS T/S relationship may also improve representations of the water mass signatures in deep layers.  相似文献   

17.
Few basins in the world exhibit such a wide range of water properties as those of the Nordic Seas with cold freshwaters from the Arctic in the western basins and warm saline waters from the Atlantic in the eastern basins. In this study we present a 50-year hydrographic climatology of the Nordic Seas in terms of depth and temperature patterns on four upper ocean specific volume anomaly surfaces. This approach allows us to better distinguish between change due to variations along such surfaces and change due to depth variations of the stratified water column. Depth variations indicate changes in the mass field while property variations along isopycnals give insight into isopycnal advection and mixing, as well as diapycnal processes. We find that the warmest waters on each surface are found in the north, close to where the isopycnal outcrops, a clear indication of downward mixing of the warmer, more saline waters on shallower isopycnals due to convective cooling at the surface. These saline waters come from the Norwegian Atlantic Slope Current by means of a very high level of eddy activity in the Lofoten Basin.The isopycnal analyses further show that the principal water mass boundary between the waters of Arctic origin in the west and Atlantic waters in the east aligns quite tightly with the Jan Mayen, Mohn, Knipovich Ridge system suggesting little cross-ridge exchange. Instead, the main routes of exchange between the eastern and western basins appear to be limited to the northern and southern ends of ridge system: Atlantic waters into the Greenland Sea in the Fram St and Artic waters into the southern Norwegian Sea just north of the Iceland-Faroe Ridge.Analysis of a representative isopycnal in the main pycnocline shows it to be stable over time with only small variations with season (except where it outcrops in winter in the Greenland and Iceland Seas). However, two very cold winters, 1968–1969, led to greater than average heat losses across the entire Lofoten Basin that eroded away much of the Lofoten eddy and induced the greatest temperature anomaly in the entire 50-year record. Interannual variations in isopycnal layer temperature correlate with the NAO index such that waters in the Iceland Sea become warmer than average with warming air temperatures and conversely in the Lofoten Basin.  相似文献   

18.
Paleo reconstructions and model simulations have suggested the Bering Strait plays a pivotal role in climate change. However, the contribution of the Bering Strait throughflow to oceanic meridional heat transport (OMHT) is about 100 times smaller than the OMHT at low latitudes in the modern climate and it is generally ignored. Based on model simulations under modern and Last Glacial Maximum (LGM,~21 ka;ka=thousand years ago) climate conditions, this study highlights the importance of the Bering Strait throughflow to OMHT. The interbasin OMHT induced by the Bering Strait throughflow is estimated by interbasin-intrabasin decomposition. Similar to barotropic-baroclinic-horizontal decomposition, we assume the nonzero net mass transport induced by interbasin throughflows is uniform across the entire section, and the interbasin term is separated to force zero net mass transport for the intrabasin term. Based on interbasinintrabasin decomposition, the contribution of the Bering Strait throughflow is determined as ~0.02 PW (1 PW=10 15 W) under the modern climate, and zero under the LGM climate because the closed Bering Strait blocked interbasin throughflows. The contribution of the Bering Strait throughflow to OMHT is rather small, consistent with previous studies. However, comparisons of OMHT under modern and LGM climate conditions indicate the mean absolute changes are typically 0.05 and 0.20 PWin the North Atlantic and North Pacific, respectively. Thus, the contribution of the Bering Strait throughflow should not be ignored when comparing OMHT under diff erent climate conditions.  相似文献   

19.
Numerical experiments with two-dimensional nonhydrostatic model have been performed to investigate tidally generated internal waves at the Dewakang sill at the southern Makassar Strait where two large-amplitude “bumps” of relatively shallow water exist. We investigate the effect of these features on vertical mixing, with emphasis on the transformation of the Indonesian throughflow (ITF) water properties. The result shows that large-amplitude internal waves are generated at both bumps by the predominant M2 tidal flow, even though the condition of the critical Froude number and the critical slope are not satisfied. The internal waves induce such vigorous vertical mixing in the sill region that the vertical diffusivity attains a maximum value of 6 × 10−3 m2s−1 and the salinity maximum and minimum core layers characterizing the ITF thermocline water are considerably weakened. Close examination reveals that bottom-intensified currents produced mainly by the joint effect of barotropic M2 flow and internal tides generated in the concave region surrounding both bumps can excite unsteady lee waves (Nakamura et al., 2000) on the inside slopes of the bumps, which tend to be trapped at the generation region and grow into large-amplitude waves. Such generation of unsteady lee waves does not occur in case of one bump alone. Trapping and amplification of the waves in the sill region induce large vertical displacements (∼60 m) of water parcels during one tidal period, leading to strong vertical mixing there. Since the K1 tidal currents are relatively weak, large-amplitude internal waves causing intense vertical mixing are not generated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The Gulf of Finland is a 400-km long and 48–135-km wide tributary estuary of the Baltic Sea featuring the longitudinal two-layer estuarine flow modified by transverse circulation. Longitudinal volume transport in the deep layer is investigated by decomposing it into an averaged, slowly changing estuarine component (due to large-scale density gradients, river discharge and mean wind stress) and wind-driven fluctuating component. The derived expression relates the total deep-layer transport to the projection of wind stress fluctuation to a site-specific direction. The relationship is tested and calibrated by the results from numerical experiments carried out with the three-dimensional baroclinic circulation model. For the entrance to the Gulf of Finland, winds from northeast support standard estuarine circulation and winds from southwest work against the density-driven and riverine flow. The deep estuarine transport may be reversed if the southwesterly wind component exceeds the mean value by 4–5.5 m s−1. According to the data from hydrographic observations in the western Gulf of Finland, an event of advective halocline disappearance was documented in August 1998. Comparison of the deep-water transport estimates calculated from the wind data in 1998 with the observed salinity variations showed that the events of rapid decay of estuarine stratification were coherent with the estimated reversals of deep-layer volume transport, i.e. events of salt wedge export from the gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号