首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavioural features of the IMF Bz component for different solar wind velocity regimes have been studied. The study revealed a significant difference in variations of the Bz component between high-speed and low-speed regimes. Formation mechanisms for the IMF meridional component as well as the relationship of Bz with dynamical properties of the large-scale magnetic fields on the Sun are discussed.  相似文献   

2.
Measurements of the north-south (B z component of the interplanetary field as compiled by King (1975) when organized into yearly histograms of the values of ¦B z ¦ reveal the following. (1) The histograms decrease exponentially from a maximum occurrence frequency at the value ¦B z ¦ = 0. (2) The slope of the exponential on a semi-log plot varies systematically roughly in phase with the sunspot number in such a way that the probability of large values of ¦B z ¦ is much greater in the years near sunspot maximum than in the years near sunspot minimum. (3) There is a sparsely populated high-value tail, for which the data are too meager to discern any solar cycle variation. The high-value tail is perhaps associated with travelling interplanetary disturbances. (4) The solar cycle variations of B z and the ordinary indicators of solar activity are roughly correlated. (5) The solar cycle variation of B z is distinctly different than that of the solar wind speed and that of the geomagnetic Ap disturbance index.Now at the Aerospace Corporation, El Segundo, Calif. 90245, U.S.A.  相似文献   

3.
A comparative analysis of solar and heliospheric magnetic fields in terms of their cumulative sums reveals cyclic and long-term changes that appear as a magnetic flux imbalance and alternations of dominant magnetic polarities. The global magnetic flux imbalance of the Sun manifests itself in the solar mean magnetic field (SMMF) signal. The north – south asymmetry of solar activity and the quadrupole mode of the solar magnetic field contribute the most to the observed magnetic flux imbalance. The polarity asymmetry exhibits the Hale magnetic cycle in both the radial and azimuthal components of the interplanetary magnetic field (IMF). Analysis of the cumulative sums of the IMF components clearly reveals cyclic changes in the IMF geometry. The accumulated deviations in the IMF spiral angle from its nominal value also demonstrate long-term changes resulting from a slow increase of the solar wind speed over 1965 – 2006. A predominance of the positive IMF B z with a significant linear trend in its cumulative signal is interpreted as a manifestation of the relic magnetic field of the Sun. Long-term changes in the IMF B z are revealed. They demonstrate decadal changes owing to the 11/22-year solar cycle. Long-duration time intervals with a dominant negative B z component were found in temporal patterns of the cumulative sum of the IMF B z .  相似文献   

4.
Wavelet Analysis of solar,solar wind and geomagnetic parameters   总被引:3,自引:0,他引:3  
Prabhakaran Nayar  S.R.  Radhika  V.N.  Revathy  K.  Ramadas  V. 《Solar physics》2002,208(2):359-373
The sunspot number, solar wind plasma, interplanetary magnetic field, and geomagnetic activity index A p have been analyzed using a wavelet technique to look for the presence of periods and the temporal evolution of these periods. The global wavelet spectra of these parameters, which provide information about the temporal average strength of quasi periods, exhibit the presence of a variety of prominent quasi periods around 16 years, 10.6 years, 9.6 years, 5.5 years, 1.3 years, 180 days, 154 days, 27 days, and 14 days. The wavelet spectra of sunspot number during 1873–2000, geomagnetic activity index A p during 1932–2000, and solar wind velocity and interplanetary magnetic field during 1964–2000 indicate that their spectral power evolves with time. In general, the power of the oscillations with a period of less than one year evolves rapidly with the phase of the solar cycle with their peak values changing from one cycle to the next. The temporal evolution of wavelet power in R z, v sw, n, B y, B z, |B|, and A p for each of the prominent quasi periods is studied in detail.  相似文献   

5.
We present the results of a study of solar wind velocity and magnetic field correlation lengths over the last 35 years. The correlation length of the magnetic field magnitude λ |B| increases on average by a factor of two at solar maxima compared to solar minima. The correlation lengths of the components of the magnetic field lBXYZ\lambda_{B_{XYZ}} and of the velocity lVYZ\lambda_{V_{YZ}} do not show this change and have similar values, indicating a continual turbulent correlation length of around 1.4×106 km. We conclude that a linear relation between λ |B|, VB 2, and Kp suggests that the former is related to the total magnetic energy in the solar wind and an estimate of the average size of geoeffective structures, which is, in turn, proportional to VB 2. By looking at the distribution of daily correlation lengths we show that the solar minimum values of λ |B| correspond to the turbulent outer scale. A tail of larger λ |B| values is present at solar maximum causing the increase in mean value.  相似文献   

6.
Thirteen synoptic maps of expansion rate of the coronal magnetic field (CMF; RBR) calculated by the so-called ‘potential model’ are constructed for 13 Carrington rotations from the maximum phase of solar activity cycle 22 through the maximum phase of cycle 23. Similar 13 synoptic maps of solar wind speed (SWS) estimated by interplanetary scintillation observations are constructed for the same 13 Carrington rotations as the ones for the RBR. The correlation diagrams between the RBR and the SWS are plotted with the data of these 13 synoptic maps. It is found that the correlation is negative and high in this time period. It is further found that the linear correlation is improved if the data are classified into two groups by the magnitude of radial component of photospheric magnetic field, |Bphor|; group 1, 0.0 G ≦ |Brpho| < 17.8 G and group 2, 17.8 G ≦ |Brpho|. There exists a strong negative correlation between the RBR and the SWS for the group 1 in contrast with a weak negative correlation for the group 2. Group 1 has a double peak in the density distribution of data points in the correlation diagram; a sharp peak for high-speed solar wind and a low peak for low-speed solar wind. These two peaks are located just on the axis of maximum variance of data points in the correlation diagram. This result suggests that the solar wind consists of two major components and both the high-speed and the low-speed winds emanating from weak photospheric magnetic regions are accelerated by the same mechanism in the course of solar activity cycle. It is also pointed out that the SWS can be estimated by the RBR of group 1 with an empirical formula obtained in this paper during the entire solar activity cycle.  相似文献   

7.
I. Sabbah 《Solar physics》2007,245(1):207-217
Neutron monitor data observed at Climax (CL) and Huancayo/Haleakala (HU/HAL) have been used to calculate the amplitude A of the 27-day variation of galactic cosmic rays (CRs). The median primary rigidity of response, R m, for these detectors encompasses the range 18 ≤R m≤46 GV and the threshold rigidity R 0 covers the range 2.97≤R 0≤12.9 GV. The daily average values of CR counts have been harmonically analyzed for each Bartels solar rotation (SR) during the period 1953 – 2001. The amplitude of the 27-day CR variation is cross-correlated to solar activity as measured by the sunspot number R, the interplanetary magnetic field (IMF) strength B, the z-component B z of the IMF vector, and the tilt angle ψ of the heliospheric current sheet (HCS). It is anticorrelated to the solar coronal hole area (CHA) index as well as to the solar wind speed V. The wind speed V leads the amplitude by 24 SRs. The amplitude of the 27-day CR variation is better correlated to each of the these parameters during positive solar polarity (A>0) than during negative solar polarity (A<0) periods. The CR modulation differs during A>0 from that during A<0 owing to the contribution of the z-component of the IMF. It differs during A 1>0 (1971 – 1980) from that during A 2>0 (1992 – 2001) owing to solar wind speed.  相似文献   

8.
Results of ourmeasurements of the longitudinal magnetic field B z for the young star RWAur A are presented. B z measured from the so-called narrow component of the He I 5876 line varies in the range from −1.47 ± 0.15 to +1.10 ± 0.15 kG. Our data are consistent with a stellar rotation period of }~5.6 days and the model of two hot spots with opposite magnetic field polarities spaced about 180° apart in longitude. Relative to the Earth, the spot with B z < 0 lies in the hemisphere above the midplane of the accretion disk, while the spot with B z > 0 is below the midplane. The upper limit for B z (at the 3σ level) obtained by averaging all observations is 180 G for the photosphere and 220 and 230 G for the Hα and [OI] 6300 line formation regions, respectively. We have also failed to detect a field in the formation region of broad emission line components: the upper limit for B z is 600 G. In two of 11 cases, we have detected a magnetic field in the formation region of the blue absorption wing of the Na I D doublet lines, i.e., in the wind from RW Aur A: B z = −180 ± 50 and −810 ± 80 G. The radial velocity of the photospheric lines in RW Aur A averaged over all our observations is }~+10.5 km s−1, i.e., a value lower than that obtained by Petrov et al. (2001) ten years earlier by 5.5 km s−1. Therefore, we discuss the possibility that RW Aur is not a binary but a triple system.  相似文献   

9.
The characteristics of latitudinal angles of solar wind flow (θv) observed near earth have been studied during the period 1973-2003. The average magnitude of θv shows distinct enhancements during the declining and maximum phases of the sunspot cycles. A close association of Bz component of IMF in the GSE system and the orientation of meridional flows in the solar wind is found which depends on the IMF sector polarity. This effect has been studied in typical geomagnetic storm periods. The occurrence of non-radial flows is also found to exhibit heliolatitudinal dependence during the years 1975 and 1985 as a characteristic feature of non-radial solar wind expansion from polar coronal holes.  相似文献   

10.
Solar wind isotropic proton temperatures as measured out to 12.2 AU heliocentric distance by the Ames plasma analyzer aboard Pioneer-10 are presented as consecutive averages over three Carrington solar rotations and discussed. The weighted least-squares fit of average temperature to heliocentric radial distance, R, yields the power law R -0.52. These average proton temperatures are not correlated as well with Pioneer-10's heliocentric radial distance (-0.85) as are the corresponding average Zürich sunspot numbers R z (-0.95). Consequently, it is difficult to isolate the spatial gradient in the Pioneer-10 solar wind proton temperatures using that data alone.  相似文献   

11.
P. B. Zuo  F. S. Wei  X. S. Feng  F. Yang 《Solar physics》2007,242(1-2):167-185
The magnetic cloud boundary layer (BL) is a disturbance structure that is located between the magnetic cloud and the ambient solar wind. In this study, we statistically analyze the characteristics of the magnetic field B z component (in GSM coordinates) inside the magnetic cloud boundary layers as well as the relationship between the magnetic cloud boundary layers and the magnetospheric substorms based on 35 typical BLs observed by Wind from 1995 to 2006. It is found that the magnetic field B z components are more turbulent inside the BLs than those inside the adjacent sheath regions and the magnetic clouds. The substorm onsets are identified by the auroral breakups that are the most reliable substorm indicators by using the Polar UVI image data. The UVI data are available only for 17 BLs. The statistical analysis indicated that 9 of the 17 events triggered the substorms when BLs crossed the magnetosphere and that the southward field in the adjacent sheath region is a necessary condition for these triggering events. In addition, the SF-type BLs, which are named by their features of the B z components inside the BLs and adjacent sheath regions, can easily trigger the substorms during their passage of the magnetosphere. SF-type BLs are characterized by sustained strong southward magnetic fields persisting for at least 30 minutes in the adjacent sheath regions and at least one change in the polarity of the B z component inside the BL. In this study, 7 out of 8 such SF-type BL events triggered the substorm expansion phase, suggesting that the SF-type BLs are another important interplanetary disturbance source of substorms.  相似文献   

12.
The geomagnetic activity is the result of the solar wind–magnetosphere interaction. It varies following the basic 11-year solar cycle; yet shorter time-scale variations appear intermittently. We study the quasi-periodic behavior of the characteristics of solar wind (speed, temperature, pressure, density) and the interplanetary magnetic field (B x , B y , B z , β, Alfvén Mach number) and the variations of the geomagnetic activity indices (D ST, AE, A p and K p). In the analysis of the corresponding 14 time series, which span four solar cycles (1966?–?2010), we use both a wavelet expansion and the Lomb/Scargle periodograms. Our results verify intermittent periodicities in our time-series data, which correspond to already known solar activity variations on timescales shorter than the sunspot cycle; some of these are shared between the solar wind parameters and geomagnetic indices.  相似文献   

13.
By analyzing observational data, it has been possible to determine quantitative relationships that represent the role of the interaction of fast and slow solar wind (SW) streams in the formation of characteristic SW properties at the Earth's orbit.It is shown that maximum values of magnetic field B M and density n M peaks in the neighbourhood of the sector boundary (SB) at the base of the high-speed stream front are associated with solar wind characteristics such as the SW minimum velocity near the SB, V m, the maximum velocity in the central part of the fast stream, V M, and the slope of the magnetic field neutral line to the solar equatorial plane at R = 2.5 R (R is the solar radius).It is concluded that enhancements of absolute values of the z-component of the magnetic field, ¦B z¦, recorded at the Earth's orbit, are largely attributable, at sufficiently large values of , to the interaction of different-velocity SW streams.  相似文献   

14.
Ten years data set is used to separate the influence of IMF Bz-component and solar wind speed on the dawn-dusk component of magnetic variations in the summer polar cap. The reference level was chosen from most quiet periods of winter solstices (small polar cap and auroral zone conductivity) to exclude the inner source component. The linear regression analysis was then used to calculate the PC variation response to Bz under different ranges of solar wind speed. As a result, taking into account the value of polar cap conductivity and effects of induced currents, the response of dawn-dusk electric field component to Bz and V was obtained and the potential difference across the polar cap was estimated to be Δ?(kV) ≈ 6(V300)2 ? 9Bz(γ) for Bz ? + 1γ. The results give a proof for simultaneous operation in the magnetosphere of two electric field generation mechanisms, related to the boundary layer processes and magnetic field reconnection. The above-mentioned functional form was shown to correlate effectively with AE index (R = 0.73).  相似文献   

15.
Li  Y.  Luhmann  J. G.  Lynch  B. J.  Kilpua  E. K. J. 《Solar physics》2011,270(1):331-346
Coronal mass ejections (CMEs) carry magnetic structure from the low corona into the heliosphere. The interplanetary CMEs (ICMEs) that exhibit the topology of helical magnetic fluxropes are traditionally called magnetic clouds (MCs). MC fluxropes with axis of low (high) inclination with respect to the ecliptic plane have been referred to as bipolar (unipolar) MCs. The poloidal field of bipolar MCs has a solar cycle dependence. We report a cyclic reversal of the poloidal field of low inclination MC fluxropes during 1976 to 2009. The MC poloidal field cyclic reversal on the same time scale of the solar magnetic cycle is evident over three sunspot cycles. Approximately 48% of ICMEs are MCs, and 40% of IMCs are bipolar MCs during solar cycle 23. The speed of the bipolar MCs has essentially the same distribution as all ICMEs, which implies that they are not from any special type of CMEs in terms of the solar origin. Although CME fluxropes may undergo a number of complications during the eruption and propagation, a significant group of MCs retains sufficient similarity to the source region magnetic field to posses the same cyclic periodicity in polarity reversal. The poloidal field of bipolar MCs gives the out-of-ecliptic-plane field or B z component in the IMF time series. MCs with southward B z field are particularly effective in causing geomagnetic disturbances. During the solar minima, the B z field IMF sequence within MCs at the leading portion of a bipolar MC is the same with the solar global dipole field. Our finding shows that MCs preferentially remove the like polarity of the solar dipole field, and it supports the participation of CMEs in the solar magnetic cycle.  相似文献   

16.
U. Anzer 《Solar physics》1969,8(1):37-52
In this paper the stability of the Kippenhahn-Schlüter model of solar filaments against arbitrary perturbations is investigated. The problem is treated in the MHD approximation and a modification of the energy principle of Bernstein et al. is used. Two necessary and sufficient stability conditions are found: (a) [B z] dB x/dz 0 and (b) B x d[B z]/dz 0. Condition (a), in the limit of small currents, leads to the condition already discussed by Kippenhahn and Schlüter; condition (b) requires that the current density in the stable filament decreases with height.On leave from the Max-Planck-Institut für Physik und Astrophysik, München, Germany.  相似文献   

17.
The longitudinal electric field associated with the observed electrostatic turbulence in the solar wind is shown to modify the dispersive characteristics of the hydromagnetic waves propagating along the interface between the solar wind and the cometary plasma. Extremely weak turbulence has a tendency to stabilize these surface waves, whereas turbulence of moderate level can be stabilizing or destabilizing depending on the strength of the cometary magnetic fieldB oc relative to the interplanetary magnetic fieldB os . ForB oc B os , destabilization is not possible.  相似文献   

18.
Multilayer feed-forward neural network models are developed to make three-hour predictions of the planetary magnetospheric Kp index. The input parameters for the networks are the Bz-component of the interplanetary magnetic field, the solar wind density n, and the solar wind velocity V, given as three-hour averages. The networks are trained with the error back-propagation algorithm on data sequences extracted from the 21st solar cycle. The result is a hybrid model consisting of two expert networks providing Kp predictions with an RMS error of 0.96 and a correlation of 0.76 in reference to the measured Kp values. This result can be compared with the linear correlation between V(t) and Kp(t + 3 hours) which is 0.47. The hybrid model is tested on geomagnetic storm events extracted from the 22nd solar cycle. The hybrid model is implemented and real time predictions of the planetary magnetospheric Kp index are available at http://www.astro.lu. se/-fredrikb.  相似文献   

19.
We study the interplanetary features and concomitant geomagnetic activity of the two high-speed streams (HSSs) selected by the Whole Heliosphere Interval (WHI) campaign participants: 20 March to 16 April 2008 in Carrington rotation (CR) 2068. This interval was chosen to perform a comprehensive study of HSSs and their geoeffectiveness during this ??deep?? solar minimum. The two HSSs within the interval were characterized by fast solar-wind speeds (peak values >?600 km?s?1) containing large-amplitude Alfvénic fluctuations, as is typical of HSSs during normal solar minima. However, the interplanetary magnetic field (IMF) magnitude [B o] was exceptionally low (??3??C?5 nT) during these HSSs, leading to lower than usual IMF B z values. The first HSS (HSS1) had favorable IMF polarity for geomagnetic activity (negative during northern Spring). The average AE and Dst for the HSS1 proper (HSS1P) were +?258 nT and ??21 nT, respectively. The second HSS (HSS2) had a positive sector IMF polarity, one that is less favorable for geomagnetic activity. The AE and Dst index averages were +?188 nT and ??7 nT, both lower than corresponding numbers for the first event, as expected. The HSS1P geomagnetic activity is comparable to, and the HSS2P geomagnetic activity lower than, corresponding observations for the previous minimum (1996). Both events?? geomagnetic activities are lower than HSS events previously studied in the declining phase (in 2003). In general, V sw was faster for the HSSs in 2008 compared to 1996. The southward IMF B z was lower in the former. The product of these two parameters [V sw and IMF B z ] comprises the solar-wind electric field, which is most directly associated with the energy input into the magnetosphere during the HSS intervals. Thus the combined effects led to the solar wind energy input in 2008 being slightly less than that in 1996. A detailed analysis of magnetic-field variances and Alfvénicity is performed to explore the characteristics of Alfvén waves (a central element in the geoeffectiveness of HSSs) during the WHI. The B z variances in the proto-CIR (PCIR) were ???30 nT2 and <?10 nT2 in the high speed streams proper.  相似文献   

20.
Plasma and magnetic field parameter variations across fast forward interplanetary shocks are analyzed during the last solar cycle minimum (1995–1996, 15 shocks), and maximum year 2000 (50 shocks). It was observed that the solar wind velocity and magnetic field strength variation across the shocks were the parameters better correlated with Dst. Superposed epoch analysis centered on the shock showed that, during solar minimum, B z profiles had a southward, long-duration variation superposed with fluctuations, whereas in solar maximum the B z profile presented 2 peaks. The first peak occurred 4 hr after the shock, and seems to be associated with the magnetic field disturbed by the shock in the sheath region. The second peak occurred 19 hr after the shock, and seems to be associated with the ejecta fields. The difference in shape and peak in solar maximum (Dst peak =−50 nT, moderate activity) and minimum (Dst peak =−30 nT, weak activity) in average Dst profiles after shocks are, probably, a consequence of the energy injection in the magnetosphere being driven by different interplanetary southward magnetic structures. A statistical distribution of geomagnetic activity levels following interplanetary shocks was also obtained. It was observed that during solar maximum, 36% of interplanetary shocks were followed by intense (Dst≤−100 nT) and 28% by moderate (−50≤Dst <−100 nT) geomagnetic activity. During solar minimum, 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity, respectively. Thus, during solar maximum a higher relative number of interplanetary shocks might be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50–60% to be followed by intense/moderate geomagnetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号