首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two end-member types of pyroclastic density current are commonly recognized: pyroclastic surges are dilute currents in which particles are carried in turbulent suspension and pyroclastic flows are highly concentrated flows. We provide scaling relations that unify these end-members and derive a segregation mechanism into basal concentrated flow and overriding dilute cloud based on the Stokes number (ST), the stability factor (ΣT) and the dense-dilute condition (DD). We recognize five types of particle behaviors within a fluid eddy as a function of ST and ΣT: (1) particles sediment from the eddy, (2) particles are preferentially settled out during the downward motion of the eddy, but can be carried during its upward motion, (3) particles concentrate on the periphery of the eddy, (4) particles settling can be delayed or ‘fast-tracked’ as a function of the eddy spatial distribution, and (5) particles remain homogeneously distributed within the eddy. We extend these concepts to a fully turbulent flow by using a prototype of kinetic energy distribution within a full eddy spectrum and demonstrate that the presence of different particle sizes leads to the density stratification of the current. This stratification may favor particle interactions in the basal part of the flow and DD determines whether the flow is dense or dilute. Using only intrinsic characteristics of the current, our model explains the discontinuous features between pyroclastic flows and surges while conserving the concept of a continuous spectrum of density currents.  相似文献   

2.
Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5?×?6?×?2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5–3.5 in heated currents and 1.5–2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ~0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.  相似文献   

3.
During granular mass movements of any kind, particles may interact with one another. The degree of interaction is a function of several variables including; grain-size distribution, particle concentration, density stratification and degree of fluidisation. The impact of particle interaction is additionally influenced by the relative speed, impact angle and clast temperature. Thus, both source conditions and transport-related processes are expected to influence the flow dynamics of pyroclastic density currents and their subsequent deposition. Here, we use tumbling experiments to shed light on the susceptibility of porous clasts to abrasion.We investigated the abrasion of unaltered volcanic rocks (5.7–80 vol.% porosity) from Unzen (Japan), Bezymianny (Russia) and Santorini (Greece) volcanoes as well as one synthetic analogue material, an insulating material with the trade name Foamglas® (95 vol.% porosity). Each experiment started with angular fragments generated in a jaw crusher from larger clasts. Two experimental series were performed; on samples with narrow and broader grain-size distributions, respectively. The dry samples were subject to rotational movement at constant speed and ambient temperature in a gum rotational tumbler for durations of 15, 30, 45, 60 and 120 min. The amount of volcanic ash (particles <2 mm) generated was evaluated as a function of experimental duration and sample porosity. We term “abrasion” as the ash fraction generated during the experiments.The observed increase of “abrasion” with increasing sample porosity and experimental duration is initially non-linear but becomes linear for experiments of 30 min duration or longer. For any given sample, abrasion appears to be more effective for coarser samples and larger initial mass. The observed range of ash generated in our experiments is between 1 and 35 wt.%. We find that this amount generally increases with increasing initial clast size or increasing breadth of the initial grain-size distribution.Despite the limits in the complexity that is experimentally attainable in this simulation of ash generation, our results clearly testify the rapid and efficient generation of ash by abrasion, strongly influenced by the material properties (e.g., crystallinity, pore textures).  相似文献   

4.
Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.  相似文献   

5.
Submarine lava flow morphology is commonly used to estimate relative flow velocity, but the effects of crystallinity and viscosity are rarely considered. We use digital petrography and quantitative textural analysis techniques to determine the crystallinity of submarine basaltic lava flows, using a set of samples from previously mapped lava flow fields at the hotspot-affected Galápagos Spreading Center. Crystallinity measurements were incorporated into predictive models of suspension rheology to characterize lava flow consistency and rheology. Petrologic data were integrated to estimate bulk lava viscosity. We compared the crystallinity and viscosity of each sample with its flow morphology to determine their respective roles in submarine lava emplacement dynamics. We find no correlation between crystallinity, bulk viscosity, and lava morphology, implying that flow advance rate is the primary control on submarine lava morphology. However, we show systematic variations in crystal size and shape distribution among pillows, lobates, and sheets, suggesting that these parameters are important indicators of eruption processes. Finally, we compared the characteristics of lavas from two different sampling sites with contrasting long-term magma supply rates. Differences between lavas from each study site illustrate the significant effect of magma supply on the physical properties of the oceanic upper crust.  相似文献   

6.
We describe a numerical simulation of both concentrated and dilute gravity-driven pyroclastic flows on a digital topographic model of the Campi Flegrei volcanic field. Families of numerical flows are generated by sampling a multi-dimensional matrix of vent coordinates, flow properties and dynamical parameters within a wide range of values. Hazard maps are constructed from the data base of simulated flows, using a mixed deterministic–statistical approach. The set of probable vents covers the area of recent eruptions. Results show the key role of topography in controlling the flow dispersion. The maximum hazard appears to be the NE sector of the caldera. Flows in the eastern sector, including the city of Naples, are shown to be efficiently hindered by the Posillipo and Camaldoli hills at the caldera borders, thus reducing the hazard. The results represent the first physically based estimate of hazard from pyroclastic flows in this densely populated area, and can be used for civil defence purposes.  相似文献   

7.
The magmatic phase of the AD 79 eruption of Vesuvius produced alternations of fall and pyroclastic density current (PDC) deposits. A previous investigation demonstrated that the formation of several PDCs was linked with abrupt increases in the proportion of denser juvenile clasts within the eruptive column. Under the premise that juvenile clast density is controlled by vesiculation processes within the conduit, we investigate the processes responsible for these variations at or close to fragmentation levels. Pumice textures (vesicle sizes, numbers, and connectivity combined with crystal textures) from the AD 79 PDC deposits are compared to those from interbedded fall samples. Both PDC and fall deposits preserve textures that represent a full spectrum of degassing and outgassing processes, from bubble nucleation to collapse. Combining the textural and volatile (groundmass H2O) data, we derive a conduit model that satisfies all the textural and physical observations made for this phase of the eruption: lateral vesicularity/density stratifications are produced by maturing of bubble textures with superimposed localized shearing of bubble-rich magmas, which enhance outgassing of H2O. The incorporation of denser slower-moving magma from the conduit margins (??lateral magma density gradient??) is likely to be responsible for the higher abundances of dense juvenile pumice that triggered partial column collapses. We also illustrate how variations in the fragmentation depth (tapping a ??vertical magma density gradient??) can be responsible for variations in erupted clast density distributions, and potentially in the extent of degassing/outgassing.  相似文献   

8.
9.
In a.d. 79, the catastrophic eruption of Vesuvio, which later was described in two famous letters by Pliny the Younger to Tacitus the Historian, destroyed Pompeii, Hercolaneum, Oplontis and Stabiae, resulting in many thousand of victims. After a few hours of the eruption, the several-kilometre-high volcanic column began to collapse, provoking strong air shocks as well as destructive pyroclastic density currents, which travelled down the volcano slopes. In 2000, an archaeological excavation survey, which was performed on the east slope of the volcano in the Terzigno–Vesuvio area at a distance of about 5 km from the vent, brought to light the ruins of several Roman villas that were completely destroyed by these currents during the a.d. 79 eruption. The present paper proposes a new structural analysis, which starts from the study of the damage produced on partially collapsed masonry walls, and determines the dynamic pressures of the currents that overran this site. The non-linear structural analysis, which is based on strength values obtained by means of experimental tests, is of the 'inverse type' and takes into account the limit behaviour of the ancient Roman masonry. The values of the dynamic pressures that were capable of producing the collapse of the masonry walls were obtained by utilising a modern limit analysis theory. The obtained results show that dynamic pressures of a few kPa (1–5) were able to cause masonry buildings to collapse. These values are consistent with those proposed in some of the latest volcanological studies made by numerical simulations of pyroclastic flow propagation. It is shown here that these dynamic pressures are even able to determine the collapse of both modern reinforced concrete and masonry wall buildings that are largely present in the area. Therefore, in possible future eruptions, dynamic pressures of this magnitude would flatten a large urbanised area, where ~700,000 people are currently living. The obtained results give a better definition of both the risk to pyroclastic currents in possible Vesuvio eruptions and provide new guidelines for construction in the neighbouring zones.Editorial responsibility: A. Woods  相似文献   

10.
We present new experimental results on the mechanisms through which steady two-dimensional density currents lead to the formation of a stratification in a closed basin. A motivation for this work is to test the underlying assumptions in a diffusive “filling box” model that describes the oceanic thermohaline circulation (Hughes, G.O. and Griffiths, R.W., A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions, Ocean Modeling, 2005, submitted.). In particular, they hypothesized that a non-uniform upwelling velocity is due to weak along-slope entrainment in density currents associated with a large horizontal entrainment ratio of E eq ?~?0.1. We experimentally measure the relationship between the along-slope entrainment ratio, E, of a density current to the horizontal entrainment ratio, E eq, of an equivalent vertical plume. The along-slope entrainment ratios show the same quantitative decrease with slope as observed by Ellison and Turner (, 6, 423–448.), whereas the horizontal entrainment ratio E eq appears to asymptote to a value of E eq?=?0.08 at low slopes. Using the measured values of E eq we show that two-dimensional density currents drive circulations that are in good agreement with the two-dimensional filling box model of Baines and Turner (Baines, W.D. and Turner, J.S., Turbulent buoyant convection from a source in a confined region, J. Fluid. Mech., 1969, 37, 51–80.). We find that the vertical velocities of density fronts collapse onto their theoretical prediction that U =-2?2/3 B 1/3 E eq 2/3 (H/R) ζ, where U is the velocity, H the depth, B the buoyancy flux, R the basin width, E eq the horizontal entrainment ratio and?ζ?= z/H the dimensionless depth. The density profiles are well fitted with?Δ?= 2?1/3 B 2/3 E eq ?2/3 H -1 [ln(ζ )?+?τ ], where?τ?is the dimensionless time. Finally, we provide a simple example of a diffusive filling box model, where we show how the density stratification of the deep Caribbean waters (below 1850?m depth) can be described by a balance between a steady two-dimensional entraining density current and vertical diffusion in a triangular basin.  相似文献   

11.
This paper describes the results of numerical experiments with a three-dimensional hydrodynamic and mud transport model in which sediment–fluid interaction is taken into account through the effects of hindered settling, buoyancy destruction in the turbulence k– model and sediment-induced barocline pressure gradients in the momentum equations. The model was applied to a schematic case representing a coastal area with a tidal river, navigation channel and harbour basin, and a real-world case, viz. Rotterdam harbour area in The Netherlands. The results show that the sediment transport into the harbour area, and subsequent siltation rates, increase by a factor 3 to 5 due to the sediment–fluid interaction. It is shown that the larger contribution stems from an increase in vertical gradients in suspended sediment.Responsible Editor: Jens Kappenberg  相似文献   

12.
This paper deals with ground-hugging, gas–pyroclast currents from explosive volcanic eruptions and their deposits. Key field observations and laboratory determinations are proposed to relate specific deposit types with flow regimes and particle concentration in the transport and depositional systems. Three relevant flow scenarios and corresponding deposit types have been recognized from a survey of pyroclastic successions of the Vulsini Volcanic District (central Italy): (1) dilute, turbulent, pyroclastic currents producing normally or multiply graded beds by direct suspension sedimentation; (2) concentrated bedload regions beneath suspension currents, depositing inversely graded beds by traction carpet sedimentation; (3) self-sustained, high particle concentration, laminar, mass flows developing massive, poorly sorted bodies, with opposite grading of coarse lithic and pumice clasts, overlying fine-grained, inversely graded, basal layers. Main distinguishing criteria include the occurrence and pattern of clast grading, clast–thickness relationships, grain size, ash matrix componentry and pyroclast size–density relationships. Downcurrent and temporal transitions among identified flow scenarios are likely to occur for changing energy conditions and gas–pyroclast ratio both on regional and local scales. The nature and efficiency of magma fragmentation, volatile content, conduit geometry (which determine the characteristics of the erupted mixture and possible lateral blast component at the vent), and the angle of incidence of the column collapse, are suggested as the main factors controlling the generation of one type over the other at flow inception. Dilute, fine-grained, overpressured eruption clouds are thought to favor the formation of low particle concentration turbulent currents. Column collapse over slightly inclined volcano slopes, causing a high degree of compression of the collapsing mixture and of gas expulsion, would favor the generation of high particle concentration pyroclastic currents.  相似文献   

13.
We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3. The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern 3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC. This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity. Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate. Layer B exhibits relatively well-sorted fines-depleted debris with some charred plant fragments; its deposition occurred by rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests that these cases represent similar source, transport and depositional phenomena.  相似文献   

14.
Stratigraphic reconstruction of the Upper Pollara eruption has allowed for the inference of eruptive mechanisms and the distillation of a sedimentological model for pyroclastic density currents (PDCs) moving across variable topography. The pre-eruptive topography in the study area was characterised by a tuff ring-like morphology, with both inward and outward dipping slopes. Highly viscous, moderately porphyritic, dacitic to rhyolitic magmas fed the eruption, which was characterised by a Vulcanian eruptive style. The stratigraphic succession was divided into five eruption units (EUs), which result from different phases of the eruption separated by stases. Sustained columns occurred only during EU1, while PDC generation dominates EU2–5. Lithofacies analysis of the PDC deposits indicates the prevalence of massive coarse-grained deposits on the inner slopes of the Pollara crater, which are interpreted as the deposits of a flow-boundary zone dominated by granular flow or fluid escape regimes. Dune-bedded, massive to stratified lithofacies dominate the outer slopes of the Pollara crater, and are interpreted as the deposits of PDCs with flow-boundary zones in which traction played a major role. Thin, massive PDC deposits are exposed on the sub-horizontal Malfa terrace, and are interpreted as representative of flow-boundary zones dominated by a granular flow regime. The occurrence of stacked deposits indicates that most of the PDCs were characterised by unsteady pulsatory behaviour, with development of trains of pulses during their transport. The downcurrent lithofacies transitions observed for the Upper Pollara deposits have finally been compared with other similar lithofacies associations which have been described for short-lived PDCs at tuff rings, in order to discuss the influence of pre-eruptive topography on lithofacies association.  相似文献   

15.
16.
This paper reports on the study of the seismic response of an urban building block located in Faial, a town of the Horta Island of the Azores, Portugal. The work fits within the framework of studying strengthening schemes suitable for the reconstruction process of a town damaged by an earthquake action and includes numerical modelling of all the building blocks with calibration of material and structural parameters based on ambient vibration tests. The study aims at understanding a number of issues that are likely to influence the global behaviour of the block and the local response of individual buildings, namely the group effect of adjacent constructions, the in-plane stiffness of floors and/or roofs and the presence of possible localized strengthening interventions in selected parts of the block.  相似文献   

17.
The Kos Plateau Tuff consists of pyroclastic deposits from a major Quaternary explosive rhyolitic eruption, centred about 10 km south of the island of Kos in the eastern Aegean, Greece. Five main units are present, the first two (units A and B) were the product of a phreatoplinian eruption. The eruption style then changed to `dry' explosive style as the eruption intensity increased forming a sequence of ignimbrites and initiating caldera collapse. The final waning phase returned to phreatomagmatic eruptive conditions (unit F). The phreatomagmatic units are fine grained, poorly sorted, and dominated by blocky vitric ash, thickly ash-coated lapilli and accretionary lapilli. They are non-welded and were probably deposited at temperatures below 100°C. All existing exposures occur at distances between 10 km and 40 km from the inferred source. Unit A is a widespread (>42 km from source), thin (upwind on Kos) to very thick (downwind), internally laminated, dominantly ash bed with mantling, sheet-like form. Upwind unit A and the lower and middle part of downwind unit A are ash-rich (ash-rich facies) whereas the upper part of downwind unit A includes thin beds of well sorted fine pumice lapilli (pumice-rich facies). Unit A is interpreted to be a phreatoplinian fall deposit. Although locally the bedforms were influenced by wind, surface water and topography. The nature and position of the pumice-rich facies suggests that the eruption style alternated between `wet' phreatoplinian and `dry' plinian during the final stages of unit A deposition.Unit B is exposed 10–19 km north of the inferred source on Kos, overlying unit A. It is a thick to very thick, internally stratified bed, dominated by ash-coated, medium and fine pumice lapilli in an ash matrix. Unit B shows a decrease in thickness and grain size and variations in bedforms downcurrent that allow definition of several different facies and laterally equivalent facies associations. Unit B ranges from being very thick, coarse and massive or wavy bedded in the closest outcrops to source, to being partly massive and partly diffusely stratified or cross-bedded in medial locations. Pinch and swell, clast-supported pumice layers are also present in medial locations. In the most distal sections, unit B is stratified or massive, and thinner and finer grained than elsewhere and dominated by thickly armoured lapilli. Unit B is interpreted to have been deposited from an unsteady, density stratified, pyroclastic density current which decelerated and progressively decreased its particle load with distance from source. Condensation of steam during outflow of the current promoted the early deposition of ash and resulted in the coarser pyroclasts being thickly ash-coated. The distribution, texture and stratigraphic position of unit B suggest that the pyroclastic density current was generated from collapse of the phreatoplinian column following a period of fluctuating discharge when the eruptive activity alternated between `wet' and `dry'. The pyroclastic density current was transitional in particle concentration between a dilute pyroclastic surge and a high particle concentration pyroclastic flow. Unidirectional bedforms in unit B suggest that the depositional boundary was commonly turbulent and in this respect did not resemble conventional pyroclastic flows. However, unit B is relatively thick and poorly sorted, and was deposited more than 19 km from source, implying that the current comprised a relatively high particle concentration and in this respect, did not resemble a typical pyroclastic surge.  相似文献   

18.
The deposition temperature of the pyroclastic density current (PDC) deposits emplaced during the AD 472 Pollena eruption (Somma-Vesuvius, Italy) has been investigated using the thermal analysis of the magnetic remanence carried by lithic clasts embedded within the deposits. A total of 310 lithic clasts were collected from all the PDC units in the Pollena stratigraphic succession, at different distances from the inferred vent and at different stratigraphic levels. The temperature reached by each individual clast during residence in the PDC was estimated through stepwise thermal demagnetization, with the values from all clasts collected at each site being used to infer the deposition temperature (T dep). Although the sedimentological features of these PDC deposits show some variation, the deposition temperature typically falls in the range 300 to 320°C, with a maximum range of 260 to 360°C. The fairly uniform temperature observed in both the dune bedded and massive deposits points to homogeneity in attainment of T dep for the different deposits and suggests similarity in the depositional regime of the different PDCs and/or in heat transfer to lithic fragments. Similarity in depositional regime was also favoured by the limited control exerted by topography on the distribution of these PDCs, with the northern wall of the Somma caldera that did not act as a morphological barrier. As a result the currents were capable of moving away from the vent, without topographic disturbances and, thus, significant variations in the cooling regime. Because the Pollena eruption is considered similar to the maximum expected event at Somma-Vesuvius, the characteristics of its deposits best simulate the likely maximum hazard for the Vesuvius region. In this regard, Pollena produced hot, dilute PDCs which were able to travel up to 12 km from the vent maintaining high temperatures across this distance.  相似文献   

19.
Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial radial propagation of the PDCs since it ignores azimuthal flows produced by real topographies that therefore need to be simulated in fully 3D conditions.  相似文献   

20.
The Scafell caldera-lake volcaniclastic succession is exceptionally well exposed. At the eastern margin of the caldera, a large andesitic explosive eruption (>5 km3) generated a high-mass-flux pyroclastic density current that flowed into the caldera lake for several hours and deposited the extensive Pavey Ark ignimbrite. The ignimbrite comprises a thick (≤125 m), proximal, spatter- and scoria-rich breccia that grades laterally and upwards into massive lapilli-tuff, which, in turn, is gradationally overlain by massive and normal-graded tuff showing evidence of soft-state disruption. The subaqueous pyroclastic current carried juvenile clasts ranging from fine ash to metre-scale blocks and from dense andesite through variably vesicular scoria to pumice (<103 kg m−3). Extreme ignimbrite lithofacies diversity resulted via particle segregation and selective deposition from the current. The lacustrine proximal ignimbrite breccia mainly comprises clast- to matrix-supported blocks and lapilli of vesicular andesite, but includes several layers rich in spatter (≤1.7 m diameter) that was emplaced in a ductile, hot state. In proximal locations, rapid deposition of the large and dense clasts caused displacement of interstitial fluid with elutriation of low-density lapilli and ash upwards, so that these particles were retained in the current and thus overpassed to medial and distal reaches. Medially, the lithofacies architecture records partial blocking, channelling and reflection of the depletive current by substantial basin-floor topography that included a lava dome and developing fault scarps. Diffuse layers reflect surging of the sustained current, and the overall normal grading reflects gradually waning flow with, finally, a transition to suspension sedimentation from an ash-choked water column. Fine to extremely fine tuff overlying the ignimbrite forms ∼25% of the whole and is the water-settled equivalent of co-ignimbrite ash; its great thickness (≤55 m) formed because the suspended ash was trapped within an enclosed basin and could not drift away. The ignimbrite architecture records widespread caldera subsidence during the eruption, involving volcanotectonic faulting of the lake floor. The eruption was partly driven by explosive disruption of a groundwater-hydrothermal system adjacent to the magma reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号