首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We document the flow features, which are associated with the important synoptic systems that affected the Bay of Bengal (BoB) and its neighbourhood and controlled the convective activity there during BOBMEX. The monsoon during July and August, 1999 was subdued. It was slightly more active in the initial phase of BOBMEX that commenced on 15th July 1999 and continued up to first week of August 1999 but weakened during the second half of August. The convection was accordingly affected, reducing the rainfall over India. There were several active and weak spells of convection over the Bay of Bengal that manifested in five low pressure systems, of which two became depressions.  相似文献   

2.
Quantitative precipitation forecasting (QPF) has been attempted over the Narmada Catchment following a statistical approach. The catchment has been divided into five sub-regions for the development of QPF models with a maximum lead-time of 24 hours. For this purpose the data of daily rainfall from 56 raingauge stations, twice daily observations on different surface meteorological parameters from 28 meteorological observatories and upper air data from 11 aerological stations for the nine monsoon seasons of 1972–1980 have been utilized. The horizontal divergence, relative vorticity, vertical velocity and moisture divergence are computed using the kinematic method at different pressure levels and used as independent variables along with the rainfall and surface meteorological parameters. Multiple linear regression equations have been developed using the stepwise procedure separately with actual and square root and log-transformed rainfall using 8-year data (1972–1979). When these equations were verified with an independent data for the monsoon season of 1980, it was found that the transformed rainfall equations fared much better compared to the actual rainfall equations. The performance of the forecasts of QPF model compared to the climatological and persistence forecasts has been assessed by computing the verification scores using the forecasts for the monsoon season of 1980.  相似文献   

3.
The objective of this study is to investigate the impact of a surface data assimilation (SDA) technique, together with the traditional four-dimensional data assimilation (FDDA), on the simulation of a monsoon depression that formed over India during the field phase of the 1999 Bay of Bengal Monsoon Experiment (BOBMEX). The SDA uses the analyzed surface data to continuously assimilate the surface layer temperature as well as the water vapor mixing ratio in the mesoscale model. The depression for the greater part of this study was offshore and since successful application of the SDA would require surface information, a method of estimating surface temperature and surface humidity using NOAA-TOVS satellites was used. Three sets of numerical experiments were performed using a coupled mesoscale model. The first set, called CONTROL, uses the NCEP (National Center for Environmental Prediction) reanalysis for the initial and lateral boundary conditions in the MM5 simulation. The second and the third sets implemented the SDA of temperature and moisture together with the traditional FDDA scheme available in the MM5 model. The second set of MM5 simulation implemented the SDA scheme only over the land areas, and the third set extended the SDA technique over land as well as sea. Both the second and third sets of the MM5 simulation used the NOAA-TOVS and QuikSCAT satellite and conventional upper air and surface meteorological data to provide an improved analysis. The results of the three sets of MM5 simulations are compared with one another and with the analysis and the BOBMEX 1999 buoy, ship, and radiosonde observations. The predicted sea level pressure of both the model runs with assimilation resembles the analysis closely and also captures the large-scale structure of the monsoon depression well. The central sea level pressures of the depression for both the model runs with assimilation were 2–4 hPa lower than the CONTROL. The results of both the model runs with assimilation indicate a larger spatial area as well as increased rainfall amounts over the coastal regions after landfall compared with the CONTROL. The impact of FDDA and SDA, the latter over land, resulted in reduced errors of the following: 1.45 K in temperature, 0.39 m s−1 in wind speed, and 14° in wind direction compared with the BOBMEX buoy observation, and 1.43 m s−1 in wind speed, 43° in wind direction, and 0.75% in relative humidity compared with the CONTROL. The impact of SDA over land and sea compared with SDA over land only showed a further marginal reduction of errors: 0.23 K in air temperature (BOBMEX buoy) and 1.33 m s−1 in wind speed simulations.  相似文献   

4.
Between 1941 and 2002 there has been a decreasing trend in the frequency of monsoon disturbances (MDs) during the summer monsoon season (June–September). This downwards trend is significant at the 99.9% level for the main monsoon phase (July–August) and the withdrawal phase (September); however, it is not significant during the onset phase (June). The variability in rainfall over the homogeneous regions of India on the sub-seasonal scale also shows a significant decreasing trend with respect to the amount of rainfall over Northwest India (NWI) and Central India (CEI) during all three phases of the monsoon. Meteorological observations reveal that there has been an eastward shift of the rainfall belt with time over the Indian region on the seasonal scale and that this shift is more prominent during the withdrawal phase. This decreasing trend in MDs together with its restricted westerly movement seem to be directly related to the decreasing trend in rainfall over CEI during both the main monsoon and withdrawal phases and over NWI during the withdrawal phase. The low-level circulation anomalies observed during two periods (period-I: 1951–1976; period-ii: 1977–2002) are in accordance with the changes in rainfall distribution, with comparatively more (less) rainfall falling over NWI, CEI and Southern Peninsular India (SPI) during period-I (period-ii), and are accompanied by a stronger (weaker) monsoon circulation embedded with an anomalous cyclonic (anti-cyclonic) circulation over CEI during the main monsoon and withdrawal phases. During the onset phase, completely opposite circulation anomalies are observed during both periods, and these are associated with more (less) rainfall over NWI, CEI and SPI during period-ii (period-I).  相似文献   

5.
Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features of very heavy rainfall (24 hours rainfall ≥125 mm) over Orissa during summer monsoon season (June–September) by analysing 20 years (1980–1999) daily rainfall data of different stations in Orissa. The principal objective of this study is to find out the role of synoptic scale monsoon disturbances in spatial and temporal variability of very heavy rainfall over Orissa. Most of the very heavy rainfall events occur in July and August. The region, extending from central part of coastal Orissa in the southeast towards Sambalpur district in the northwest, experiences higher frequency and higher intensity of very heavy rainfall with less interannual variability. It is due to the fact that most of the causative synoptic disturbances like low pressure systems (LPS) develop over northwest (NW) Bay of Bengal with minimum interannual variation and the monsoon trough extends in west-northwesterly direction from the centre of the system. The very heavy rainfall occurs more frequently with less interannual variability on the western side of Eastern Ghat during all the months and the season except September. It occurs more frequently with less interannual variability on the eastern side of Eastern Ghat during September. The NW Bay followed by Gangetic West Bengal/Orissa is the most favourable region of LPS to cause very heavy rainfall over different parts of Orissa except eastern side of Eastern Ghat. The NW Bay and west central (WC) Bay are equally favourable regions of LPS to cause very heavy rainfall over eastern side of Eastern Ghat. The frequency of very heavy rainfall does not show any significant trend in recent years over Orissa except some places in north-east Orissa which exhibit significant rising trend in all the monsoon months and the season as a whole.  相似文献   

6.
Summer monsoon rainfall was simulated by a global 20 km-mesh atmospheric general circulation model (AGCM), focusing on the changes in the summer monsoon rainfall of Bangladesh. Calibration and validation of AGCM were performed over Bangladesh for generating summer monsoon rainfall scenarios. The model-produced summer monsoon rainfall was calibrated with a ground-based observational data in Bangladesh during the period 1979–2003. The TRMM 3B43 V6 data are also used for understanding the model performance. The AGCM output obtained through validation process made it confident to be used for near future and future summer monsoon rainfall projection in Bangladesh. In the present-day (1979–2003) climate simulations, the high-resolution AGCM produces the summer monsoon rainfall better as a spatial distribution over SAARC region in comparison with TRMM but magnitude may be different. Summer monsoon rainfall projection for Bangladesh was experimentally obtained for near future and future during the period 2015–2034 and 2075–2099, respectively. This work reveals that summer monsoon rainfall simulated by a high-resolution AGCM is not directly applicable to application purpose. However, acceptable performance was obtained in estimating summer monsoon rainfall over Bangladesh after calibration and validation. This study predicts that in near future, summer monsoon rainfall on an average may decrease about ?0.5 % during the period 2015–2034 and future summer monsoon rainfall may increase about 0.4 % during the period 2075–2099.  相似文献   

7.
The Indonesian archipelago which has over 15,000 islands, lies in the tropics between Asia and Australia. This eventually alters the rainfall variability over the region, which was influenced by the Asian-Australian monsoon and controlled by intraseasonal variabilities such as convectively coupled equatorial waves (CCEW), i.e., Kelvin, n?=?1 equatorial Rossby (ER), mixed Rossby gravity (MRG), and n?=?1 Westward inertio gravity (WIG), including the Madden–Julian Oscillation (MJO). This study examines a 15-year 3B42 data for trapping CCEW and MJO in the region of Indonesia during both active and extreme Western North Pacific (WNP) and Australian (AU) monsoon phases, which are then compared with 30-year rainfall anomalies among 38 synoptic stations over Indonesia. The space–time spectral analysis is employed to filter each wave including the MJO in the equator, then proceeding with the empirical orthogonal function (EOF) method to seek each wave peak which then coincides with WNP and AU monsoon peaks over Indonesia. It is concluded that an extreme monsoon classification has proven to control rainfall activity related to the CCEW and MJO at 60.66% during December through February (DJF)-WNP for only the significant wave perturbation value. Meanwhile, the CCEW and MJO significantly increase/decrease precipitation at Day 0 for about 37.88% from the total of Day 1st to Day end. Although the contribution of the CCEW and MJO does not profoundly influence rainfall activity during monsoon phase over Indonesia, they still modulate weather condition for more than 50%. On the other hand, a complex topography with a number of land–sea complexities is capable of influencing the rainfall variability in the region as a negative relationship is associated with the CCEW and MJO either during DJF-WNP or July through August (JAS)-AU monsoon phase.  相似文献   

8.
The characteristic features of the marine boundary layer (MBL) over the Bay of Bengal during the southwest monsoon and the factors influencing it are investigated. The Bay of Bengal and Monsoon Experiment (BOBMEX) carried out during July–August 1999 is the first observational experiment under the Indian Climate Research Programme (ICRP). A very high-resolution data in the vertical was obtained during this experiment, which was used to study the MBL characteristics off the east coast of India in the north and south Bay of Bengal. Spells of active and suppressed convection over the Bay were observed, of which, three representative convective episodes were considered for the study. For this purpose a one-dimensional multi-level PBL model with a TKE-ε closure scheme was used. The soundings, viz., the vertical profiles of temperature, humidity, zonal and meridional component of wind, obtained onboard ORV Sagar Kanya and from coastal stations along the east coast are used for the study. The temporal evolution of turbulent kinetic energy, marine boundary layer height (MBLH), sensible and latent heat fluxes and drag coefficient of momentum are simulated for different epochs of monsoon and monsoon depressions during BOBMEX-99.The model also generates the vertical profiles of potential temperature, specific humidity, zonal and meridional wind. These simulated values compared reasonably well with the observations available from BOBMEX.  相似文献   

9.
Active and break spells of the Indian summer monsoon   总被引:6,自引:0,他引:6  
In this paper, we suggest criteria for the identification of active and break events of the Indian summer monsoon on the basis of recently derived high resolution daily gridded rainfall dataset over India (1951–2007). Active and break events are defined as periods during the peak monsoon months of July and August, in which the normalized anomaly of the rainfall over a critical area, called the monsoon core zone exceeds 1 or is less than −1.0 respectively, provided the criterion is satisfied for at least three consecutive days. We elucidate the major features of these events. We consider very briefly the relationship of the intraseasonal fluctuations between these events and the interannual variation of the summer monsoon rainfall.  相似文献   

10.
The change in the type of vegetation fraction can induce major changes in the local effects such as local evaporation, surface radiation, etc., that in turn induces changes in the model simulated outputs. The present study deals with the effects of vegetation in climate modeling over the Indian region using the MM5 mesoscale model. The main objective of the present study is to investigate the impact of vegetation dataset derived from SPOT satellite by ISRO (Indian Space Research Organization) versus that of USGS (United States Geological Survey) vegetation dataset on the simulation of the Indian summer monsoon. The present study has been conducted for five monsoon seasons (1998–2002), giving emphasis over the two contrasting southwest monsoon seasons of 1998 (normal) and 2002 (deficient). The study reveals mixed results on the impact of vegetation datasets generated by ISRO and USGS on the simulations of the monsoon. Results indicate that the ISRO data has a positive impact on the simulations of the monsoon over northeastern India and along the western coast. The MM5-USGS has greater tendency of overestimation of rainfall. It has higher standard deviation indicating that it induces a dispersive effect on the rainfall simulation. Among the five years of study, it is seen that the RMSE of July and JJAS (June–July–August–September) for All India Rainfall is mostly lower for MM5-ISRO. Also, the bias of July and JJAS rainfall is mostly closer to unity for MM5-ISRO. The wind fields at 850 hPa and 200 hPa are also better simulated by MM5 using ISRO vegetation. The synoptic features like Somali jet and Tibetan anticyclone are simulated closer to the verification analysis by ISRO vegetation. The 2 m air temperature is also better simulated by ISRO vegetation over the northeastern India, showing greater spatial variability over the region. However, the JJAS total rainfall over north India and Deccan coast is better simulated using the USGS vegetation. Sensible heat flux over north-west India is also better simulated by MM5-USGS.  相似文献   

11.
The summer monsoon rainfall over Orissa occurs mostly due to low pressure systems (LPS) developing over the Bay of Bengal and moving along the monsoon trough. A study is hence undertaken to find out characteristic features of the relationship between LPS over different regions and rain-fall over Orissa during the summer monsoon season (June-September). For this purpose, rainfall and rainy days over 31 selected stations in Orissa and LPS days over Orissa and adjoining land and sea regions during different monsoon months and the season as a whole over a period of 20 years (1980-1999) are analysed. The principal objective of this study is to find out the role of LPS on spatial and temporal variability of summer monsoon rainfall over Orissa. The rainfall has been significantly less than normal over most parts of Orissa except the eastern side of Eastern Ghats during July and hence during the season as a whole due to a significantly less number of LPS days over northwest Bay in July over the period of 1980-1999. The seasonal rainfall shows higher interannual variation (increase in coefficient of variation by about 5%) during 1980-1999 than that during 1901-1990 over most parts of Orissa except northeast Orissa. Most parts of Orissa, especially the region extending from central part of coastal Orissa to western Orissa (central zone) and western side of the Eastern Ghats get more seasonal monsoon rainfall with the development and persistence of LPS over northwest Bay and their subsequent movement and persistence over Orissa. The north Orissa adjoining central zone also gets more seasonal rainfall with development and persistence of LPS over northwest Bay. While the seasonal rainfall over the western side of the Eastern Ghats is adversely affected due to increase in LPS days over west central Bay, Jharkhand and Bangladesh, that over the eastern side of the Eastern Ghats is adversely affected due to increase in LPS days over all the regions to the north of Orissa. There are significant decreasing trends in rainfall and number of rainy days over some parts of southwest Orissa during June and decreasing trends in rainy days over some parts of north interior Orissa and central part of coastal Orissa during July over the period of 1980-1999  相似文献   

12.
Objective analysis of daily rainfall at the resolution of 1° grid for the Indian monsoon region has been carried out merging dense land rainfall observations and INSAT derived precipitation estimates. This daily analysis, being based on high dense rain gauge observations was found to be very realistic and able to reproduce detailed features of Indian summer monsoon. The inter-comparison with the observations suggests that the new analysis could distinctly capture characteristic features of the summer monsoon such as north-south oriented belt of heavy rainfall along the Western Ghats with sharp gradient of rainfall between the west coast heavy rain region and the rain shadow region to the east, pockets of heavy rainfall along the location of monsoon trough/low, over the east central parts of the country, over north-east India, along the foothills of Himalayas and over the north Bay of Bengal. When this product was used to assess the quality of other available standard climate products (CMAP and ECMWF reanalysis) at the gird resolution of 2.5°, it was found that the orographic heavy rainfall along Western Ghats of India was poorly identified by them. However, the GPCC analysis (gauge only) at the resolution of 1° grid closely discerns the new analysis. This suggests that there is a need for a higher resolution analysis with adequate rain gauge observations to retain important aspects of the summer monsoon over India. The case studies illustrated show that the daily analysis is able to capture large-scale as well as mesoscale features of monsoon precipitation systems. This study with data of two seasons (2001 and 2003) has shown sufficiently promising results for operational application, particularly for the validation of NWP models.  相似文献   

13.
Convective activity is one of the major processes in the atmosphere influencing the local and large-scale weather in the tropics. The latent heat released by the cumulus cloud is known to drive monsoon circulation, which on the other hand supplies the moisture that maintains the cumulus clouds. An investigation is carried out on the convective structure of the atmosphere during active and suppressed periods of convection using data sets obtained from the Bay of Bengal and Monsoon Experiment (BOBMEX). The cumulus convection though being a small-scale phenomenon, still influences its embedding environment by interaction through various scales. This study shows the variation in the kinematic and convective parameters during the transition from suppressed to active periods of convection. Convergence in the lower levels and strong upward vertical velocity, significant during active convection are associated with the formation of monsoon depressions. The apparent heat source due to latent heat release and the vertical transport of the eddy heat by cumulus convection, and the apparent moisture sink due to net condensation and vertical divergence of the eddy transport of moisture, are estimated through residuals of the thermodynamic equation and examined in relation to monsoon activity during BOBMEX.  相似文献   

14.
Although previous literature have considered Southern Oscillation Index (SOI), Indian Dipole, and SST as the major teleconnection patterns to explain the variability of summer monsoon rainfall over India. South Asia low pressure and Indian Ocean high are the centers of action that dominates atmospheric circulations in Indian continent. This paper examines the possible impact of South Asian low pressure distribution on the variability of summer monsoon rainfall of India using centers of action approach. Our analysis demonstrates that the explanation of summer monsoon rainfall variability over Central India is improved significantly if the SOI is replaced by South Asian low heat. This contribution also explains the physical mechanisms to establish the relationships between the South Asian low heat and regional climate by examining composite maps of large-scale circulation fields using NCEP/NCAR Reanalysis data.  相似文献   

15.
Having recognized that it is the tropospheric temperature (TT) gradient rather than the land–ocean surface temperature gradient that drives the Indian monsoon, a new mechanism of El Niño/Southern Oscillation (ENSO) monsoon teleconnection has been unveiled in which the ENSO influences the Indian monsoon by modifying the TT gradient over the region. Here we show that equatorial Pacific coralline oxygen isotopes reflect TT gradient variability over the Indian monsoon region and are strongly correlated to monsoon precipitation as well as to the length of the rainy season. Using these relationships we have been able to reconstruct past Indian monsoon rainfall variability of the first half of the 20th century in agreement with the instrumental record. Additionally, an older coral oxygen isotope record has been used to reconstruct seasonally resolved summer monsoon rainfall variability of the latter half of the 17th century, indicating that the average annual rainfall during this period was similar to that during the 20th century. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The summer monsoon rainfall over Orissa, a state on the eastern coast of India, is more significantly related than Indian summer monsoon rainfall (ISMR) to the cyclonic disturbances developing over the Bay of Bengal. Orissa experiences floods and droughts very often due to variation in the characteristics of these disturbances. Hence, an attempt was made to find out the inter-annual variability in the rainfall over Orissa and the frequencies of different categories of cyclonic disturbances affecting Orissa during monsoon season (June–September). For this purpose, different statistical characteristics, such as mean, coefficient of variation, trends and periodicities in the rainfall and the frequencies of different categories of cyclonic disturbances affecting Orissa, were analysed from 100 years (1901–2000) of data. The basic objective of the study was to find out the contribution of inter-annual variability in the frequency of cyclonic disturbances to the inter-annual variability of monsoon rainfall over Orissa. The relationship between summer monsoon rainfall over Orissa and the frequency of cyclonic disturbances affecting Orissa shows temporal variation. The correlation between them has significantly decreased since the 1950s. The variation in their relationship is mainly due to the variation in the frequency of cyclonic disturbances affecting Orissa. The variability of both rainfall and total cyclonic disturbances has been above normal since the 1960s, leading to more floods and droughts over Orissa during recent years. The inter-annual variability of seasonal rainfall over Orissa and the frequency of cyclonic disturbances affecting Orissa during monsoon season show a quasi-biennial oscillation period of 2–2.8 years. There is least impact of El Nino southern oscillation (ENSO) on inter-annual variability of both the seasonal rainfall over Orissa and the frequencies of monsoon depressions/total cyclonic disturbances affecting Orissa.  相似文献   

17.
Spatial variability and rainfall characteristics of Kerala   总被引:1,自引:0,他引:1  
Geographical regions of covariability in precipitation over the Kerala state are exposed using factor analysis. The results suggest that Kerala can be divided into three unique rainfall regions, each region having a similar covariance structure of annual rainfall. Stations north of 10‡N (north Kerala) fall into one group and they receive more rainfall than stations south of 10‡N (south Kerala). Group I stations receive more than 65% of the annual rainfall during the south-west monsoon period, whereas stations falling in Group II receive 25–30% of annual rainfall during the pre-monsoon and the north-east monsoon periods. The meteorology of Kerala is profoundly influenced by its orographical features, however it is difficult to make out a direct relationship between elevation and rainfall. Local features of the state as reflected in the rainfall distribution are also clearly brought out by the study.  相似文献   

18.
The northeast monsoon rainfall (NEMR) contributes about 20–40 % of annual rainfall over the North Indian Ocean (NIO). In the present study, the relationship between the NEMR and near-surface atmospheric wind convergence (NSAWC) over the NIO is demonstrated using high-resolution multisatellite data. The rainfall product from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis and near-surface wind product from the Cross-Calibration Multi-Platform available at 0.25° × 0.25° spatial resolution are used for the study. Large-scale NSAWC and divergence maps over the tropical Indian Ocean are generated at monthly scale from the wind product for the period of 1988–2010. A preliminary analysis is carried out for two consecutive anomalous Indian Ocean Dipole (IOD) years 2005 (negative) and 2006 (positive). The distinct spatial patterns of rainfall rate and NSAWC fields over the NIO clearly show the evolution of the anomalous IOD events in the south eastern equatorial Indian Ocean (EEIO). The spatially averaged time-series of pentad NSAWC over the south EEIO box suggests that the variability occurs in phase with rainfall rate during both the northeast monsoon years. Furthermore, the scatter plot between area-averaged pentad rainfall and convergence over the south EEIO box for the period of 1998–2010 shows statistically significant linear correlation which reveals that NSAWC plays a key role in regulating the NEMR.  相似文献   

19.
The empirical orthogonal functions have been obtained for the individual summer monsoon (June through September) months using the grid point values of monthly 700 mb geopotential heights over Indian region. The data for 21 summer monsoon months for the years 1958 to 1978 have been used in the present computation. The major variance reduction is due to the first three dominant functions accounting over 80% of the total variance in each month. The variance reduction only due to the first function ranges from 45 to 65%. The first function has in-pbase oscillation throughout the area indicating that the area under study is homogeneous and the centre of the oscillation lies over northwest India. The amplitudes of the first function also show generally quasipers stence in their sign within a season. The second function has two centres of action over the region of monsoon trough which are in phase. The third function has also two centres oriented in the east-west direction but they are in the opposite phase. Fairly large values of correlation coefficients between the patterns of the different monsoon months suggest that the patterns for these months corresponding to the first and the second functions respectively are quite similar. The patterns for these months also evolve with time in a related way. The spectrum analysis to the time series of amplitudes indicates the presence of the quasi-periodicity of 3 years during these monsoon months. The amplitudes corresponding to the dominant functions are found to be significantly related with the rainfall of central and western parts of India  相似文献   

20.
The aim of this study was to investigate temporal variation in seasonal and annual rainfall trend over Ranchi district of Jharkhand, India for the period (1901–2014: 113 years). Mean monthly rainfall data series were used to determine the significance and magnitude of the trend using non-parametric Mann–Kendall and Sen’s slope estimator. The analysis showed a significant decreased in rainfall during annual, winter and southwest monsoon rainfall while increased in pre-monsoon and post-monsoon rainfall over the Ranchi district. A positive trend is detected in pre-monsoon and post-monsoon rainfall data series while annual, winter and southwest monsoon rainfall showed a negative trend. The maximum decrease in rainfall was found for monsoon (? 1.348 mm year?1) and minimum (? 0.098 mm year?1) during winter rainfall. The trend of post-monsoon rainfall was found upward (0.068 mm year?1). The positive and negative trends of annual and seasonal rainfall were found statistically non-significant except monsoon rainfall at 5% level of significance. Rainfall variability pattern was calculated using coefficient of variation CV, %. Post-monsoon rainfall showed the maximum value of CV (70.80%), whereas annual rainfall exhibited the minimum value of CV (17.09%), respectively. In general, high variation of CV was found which showed that the entire region is very vulnerable to droughts and floods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号