首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The lunar Orientale basin and its associated facies formed as a result of impact into lunar highland crustal rocks. The crater rim is shown to be closely represented by the position of the outer Rook Mountain ring, approximately 620 km in diam. The inner Rook Mountains form a central peak ring within the crater. The 900 km diam Cordillera ring is a fault scarp which formed in the terminal stages of the cratering event as a large portion of the crust collapsed inward toward the recently excavated crater, forming a mega-terrace. This collapse pushed the wall of the Orientale crater inward, distorting it and slightly decreasing its radius.A domical facies is almost exclusively developed between the Cordillera and outer Rook rings. The domical facies is interpreted to be radially textured ejecta which was disrupted and modified to a jumbled domical texture by seismic shaking associated with the formation of the mega-terrace. The plains and corrugated facies pre-date the mare fill and lie within the Orientale crater. These facies are interpreted to have been deposited contemporaneously with the cratering event as partial and total impact melts which collected on the floor of the crater during the terminal stages of the event. The plains facies, with an estimated thickness of 1 km and a volume of 75000 km3, represent the most thoroughly impact melted materials which collected and ponded in the central portion of the crater floor. The corrugated facies, with an estimated thickness of 1 km and a volume of 180000 km3, represent impact partial melts mixed with debris. A relatively small volume of mare material was subsequently deposited in the basin (probably less than 25000 km3 in Mare Orientale).There is little evidence that the basin has undergone major structural modifications subsequent to the terminal stages of the cratering event. The striking implication for the Orientale gravity anomaly is that mascon formation may be primarily related to crustal excavation and upwarping of a moho plug, rather than attributable to post-impact mare filling.The plains units on the floor of Orientale are similar to Cayley-like plains in other multi-ringed basins and on smaller crater floors. Impact melt deposits may therefore be a significant source of Cayley-like plains units.The volumes of impact melt associated with the Orientale basin and their mode of deposition have important implications for petrogenetic models. Multi-ringed basin formation provides a mechanism for instantaneously melting large volumes of shallow to intermediate depth lunar crustal material which is emplaced such that the differentiation and crystallization of a variety of igneous rock types and textures may occur.  相似文献   

2.
Grooved and hilly terrains occur at the antipode of major basins on the Moon (Imbrium, Orientale) and Mercury (Caloris). Such terrains may represent extensive landslides and surface disruption produced by impact-generatedP-waves and antipodal convergence of surface waves. Order-of-magnitude calculations for an Imbrium-size impact (1034 erg) on the Moon indicateP-wave-induced surface displacements of 10 m at the basin antipode that would arrive prior to secondary ejecta. Comparable surface waves would arrive subsequent to secondary ejecta impacts beyond 103 km and would increase in magnitude as they converge at the antipode. Other seismically induced surface features include: subdued, furrowed crater walls produced by landslides and concomitant secondary impacts; emplacement and leveling of light plains units owing to seismically induced ‘fluidization’ of slide material; knobby, pitted terrain around old basins from enhancement of seismic waves in ancient ejecta blankets; and perhaps the production and enhancement of deep-seated fractures that led to the concentration of farside lunar maria in the Apollo-Ingenii region.  相似文献   

3.
《Icarus》1987,71(1):19-29
From counts of postbasin craters larger than 30 km in diameter, lying within or near to seven giant front face lunar basins, relative ages for the basins may be obtained. These relative ages correlate well with absolute basin ages found from viscosity arguments in R. B. Baldwin (1987, Icarus 70, □□□-□□□). From crater counts the basins are in the following sequence of increasing relative age: Orientale, Imbrium, Crisium, Serenitatis, Nectaris, Humorum, and the unnamed basin lying between Werner and the Altai ring. The absolute ages from Baldwin (1987) range from 3.80 to 4.30 × 109 years while a correlation with the relative ages of this paper yields a range of 3.79 to 4.27 × 109 years. The discrepancy is largely due to Serenitatis where the debris from Imbrium has presumably buried some post-Serenitatis craters. From both sets of data there is no evidence that a “Terminal Lunar Cataclysm” ever occured.  相似文献   

4.
Global mapping of lunar crustal magnetic fields by Lunar Prospector   总被引:1,自引:0,他引:1  
The Lunar Prospector Electron Reflectometer has obtained the first global map of lunar crustal magnetic fields, revealing that the effects of basin-forming impacts dominate the large-scale distribution of remanent magnetic fields on the Moon. The weakest surface magnetic fields (<0.2 nT) are found within two of the largest and most recent impact basins, Orientale and Imbrium. Conversely, the largest concentrations of strong surface fields (>40 nT) are diametrically opposite to these same basins. This pattern is present though less pronounced for several other post-Nectarian impact basins larger than 500 km in diameter. The reduced strength and clarity of the pattern for older basins may be attributed to: (1) demagnetization from many smaller impacts, which erases antipodal magnetic signatures over time, (2) superposition effects from other large impacts, and (3) variation in the strength of the ambient magnetizing field. The absence of fringing fields stronger than 1 nT around the perimeter of the Imbrium basin or associated with craters within the basin implies that any uniform magnetization of the impact melt must be weaker than ∼10−6 G cm3 g−1. This limits the strength of any steady ambient magnetic field to no more than ∼0.1 Oe at the lunar surface while the basin cooled for tens of millions of years following the Imbrium impact 3.8 billion years ago.  相似文献   

5.
This paper presents an updated stratigraphical and compositional study of the exposed maria within the Imbrium basin on the Moon. Clementine multispectral data were employed to derive TiO2 and FeO wt% abundance estimates of potentially distinct basaltic flows. Additionally, NASA Lunar Orbiter images were used to estimate flow ages using crater count statistics. Mare Imbrium shows evidence of a complex suite of low to high-Ti basaltic lava units infilling the basin over an 800 million year timescale. More than a third (37%) of identified mare basalts were found to contain 1-3 wt% TiO2. Two other major mare lithological units (representing about 25% of the surface each) show TiO2 values between 3-5 and 7-9 wt%. The dominant fraction (55%) of the sampled maria contain FeO between 16 and 18 wt%, followed by 27% of maria having 18-20 wt% and the remaining 18%, 14-16 wt% FeO. A crater frequency count (for diameters >500 m) shows that in three quarters of the sampled mare crater counts range between 3.5 and 5.5×10−2 per km2, which translates, according to a lunar cratering model chronology, into estimated emplacement ages between ∼3.3 and 2.5 Ga. A compositional convergence trend between the variations of iron and titanium oxides was identified, in particular for materials with TiO2 and FeO content broadly above 5 and 17 wt%, respectively, suggesting a related petrogenesis and evolution. According to these findings, three major periods of mare infill are exposed in the Imbrium basin; despite each period showing a range of basaltic compositions (classified according to their TiO2 content), it is apparent that, at least within these local geological settings, the igneous petrogenesis generally evolved through time towards more TiO2- and FeO-rich melts.  相似文献   

6.
It is shown that endogenic lava flow processes can be identified by their characteristic effects on lunar crater size distributions without necessarily being able to recognise individual flows on the photographs studied. The thickness of lava flows or a series of flows can be estimated from these crater size distribution characteristics. The lava flow histories of the Apollo landing sites 11, 12 and 15 are discussed in detail. The thicknesses of the most recent (3–3.4 × 109 years ago) flows there and of the youngest flows in an area in south-west Mare Imbrium (3 × 109 years) are found to range between 30 and 60 m. The subsequent flow episodes at the landing sites showing up in the crater size distributions can be related to differences in the radiometric ages of the respective lunar rocks.  相似文献   

7.
Clark R. Chapman 《Icarus》1974,22(3):272-291
Computerized cratering-obliteration models are developed for use in interpreting planetary surface histories in terms of the diameter-frequency relations for craters classified by morphology. An application is made to a portion of the lunar uplands, revealing several episodes of blanketing, presumably due to the formation of some of the major basins.Application to Martian craters leads to the following picture of Martian cratering and obliteration history. During a probable period of intense early bombardment, craters were degraded by two processes: a depositional-type process connected with the declining cratering rate, and a process tending to flatten the largest craters (e.g., isostatic adjustment). During late stages of the early bombardment, or subsequent to it, there occurred a major relative episode of obliteration (probably atmosphere related), but it ceased concurrently with the massive (presumably volcanic) resurfacing of the cratered plains. Subsequent resurfacing episodes have occurred in the smooth plain terrains, but obliteration processes have been virtually absent in the low-latitude cratered terrains.Recent global Martian cratering interpretations of Hartmann and Soderblom are compared. Absolute cratering chronologies are only so good as knowledge of the absolute cratering flux on Mars. The crater data of Arvidson, Mutch, and Jones do not confirm the basis, whereby Soderblom requires the dominant Martian crater obliteration process to be coincident in time with the early bombardment. If the asteroidal-cometary impact flux on Mars has averaged five times the lunar flux during post-lunar-mare epochs, then the obliterative episode lasted about half a billion years and occurred about 1.5 × 109 yr ago.  相似文献   

8.
The lunar Late Heavy Bombardment (LHB) defines a time between ∼3.8 to possibly 4.1 Gy ago when the Nectarian and early-Imbrium basins on the Moon with reasonably well-constrained ages were formed. Some have argued that these basins were produced by a terminal cataclysm that caused a spike in the inner Solar System impactor flux during this interval. Others have suggested the basins were formed by the tail end of a monotonically decreasing impactor population originally produced by planet formation processes in the inner Solar System. Here we investigate whether this so-called declining bombardment scenario of the LHB is consistent with constraints provided by planet formation models as well as the inferred ages of Nectaris, Serenitatis, Imbrium, and Orientale. We did this by modeling the collisional and dynamical evolution of the post-planet formation population (PPP) for a range of starting PPP masses. Using a Monte Carlo code, we computed the probability that the aforementioned basins were created at various times after the Moon-forming event approximately 4.54 Ga. Our results indicate that the likelihood that the declining bombardment scenario produced Nectaris, Serenitatis, Imbrium, and Orientale (or even just Imbrium and Orientale) at any of their predicted ages is extremely low and can be ruled out at the 3σ confidence level, regardless of the PPP's starting mass. The reason is that collisional and dynamical evolution quickly depletes the PPP, leaving behind a paucity of large projectiles capable of producing the Moon's youngest basins between 3.8-4.1 Gy ago. If collisions are excluded from our model, we find that the PPP produces numerous South Pole-Aitken-like basins during the pre-Nectarian period. This is inconsistent with our understanding of lunar topography. Accordingly, our results lead us to conclude that the terminal cataclysm scenario is the only existing LHB paradigm at present that is both viable from a dynamical modeling perspective and consistent with existing constraints.  相似文献   

9.
The 1300-km-diameter Caloris impact basin is surrounded by well-defined ejecta units that can be recognized from more than 1000 km, radially outward from the basin edge. A formal rock stratigraphic nomenclature is proposed for the Caloris ejecta units, which are collectively called the Caloris Group. Each of the individual formations within the Group are described and compared to similar rock units associated with the lunar Imbrium and Orientale basins. A crater degradation chronology, linked the the Caloris event, is also proposed to assist in stratigraphic correlation on a Mercury-wide basis.  相似文献   

10.
Matija ?uk  Brett J. Gladman 《Icarus》2010,207(2):590-7225
Multiple impact basins formed on the Moon about 3.8 Gyr ago in what is known as the lunar cataclysm or Late Heavy Bombardment. Many workers currently interpret the lunar cataclysm as an impact spike primarily caused by main-belt asteroids destabilized by delayed planetary migration. We show that morphologically fresh (class 1) craters on the lunar highlands were mostly formed during the brief tail of the cataclysm, as they have absolute crater number density similar to that of the Orientale basin and ejecta blanket. The connection between class 1 craters and the cataclysm is supported by the similarity of their size-frequency distribution to that of stratigraphically-identified Imbrian craters. Majority of lunar craters younger than the Imbrium basin (including class 1 craters) thus record the size-frequency distribution of the lunar cataclysm impactors. This distribution is much steeper than that of main-belt asteroids. We argue that the projectiles bombarding the Moon at the time of the cataclysm could not have been main-belt asteroids ejected by purely gravitational means.  相似文献   

11.
Although researchers in the last decade have been primarily concerned with the exotic findings of the more distant planets and moons in our solar system, as given by the Voyager series, there is still much work to be done on our nearer neighbours, including the Moon. This paper summarizes some basic age dating of a portion of the lunar surface, namely the mare in the crater Tsiolkovsky on the lunar far side.Using the Apollo 15 panoramic camera photographs, the cumulative crater frequency (N km-2) relative to crater diameter (D) distribution has been obtained for the mare in the crater Tsiolkovsky. The diameter size range sampled was 0.07 km < D < 1 km. A total of 12 604 craters were counted and their average apparent diameters measured. There were 85 sample areas on the mare surface which were chosen at random, after exclusion of blanketed, volcanic or secondary cratered areas. It was found that a large proportion of the crater floor contains endogenic features, especially volcanic vents at approximately D = 0.3 km. An additional 7 areas of interest were also examined in detail for comparison with areas of purely primary impact craters. Evidence for up to 8 lava floodings can be detected from the size-frequency distributions although no visual data, e.g., flow lobes, can be seen on the mare surface.The total size-frequency distribution for all the areas is coincident with Neukum et al. (1975a and b) Calibration Distribution in the size range 0.25 km < D < 1 km which is at the smallest crater diameters that they obtained. Neukum et al. (1975a and b) give their distribution as a polynomial of 7th degree. However, in this present study a variation is indicated in the steepening of the curve for D < 0.1 km.The results also approximate (but only for D < 0.6 km) the distribution obtained by Shoemaker et al. (1970) in the range 100 m < D < 3 km where N ~ D -2.9. The best fit line reached for the data given here is N ~ D -2.682.Comparison of the distribution with plots for the maria at Apollo 11, 12, and 15 landing sites show that Tsiolkovsky mare is 3.51 ± 0.1 × 109 yr old. This agrees with other workers (see Gornitz, 1973) who place it between Mare Tranquillitatis (Apollo 11 radiometric dating: 3.5 to 3.9 aeons) and Oceanus Procellarum (Apollo 12: 3.5 to 3.4 aeons). There are no rock samples from Tsiolkovsky to given an absolute age.This places Tsiolkovsky mare within the weighted mean of the age range (1.0 to 4.3 × 109 yr old) of the maria on the Moon. From this it can be concluded that the processes producing the vast basalt outpourings seen on the Moon's face apply for the far side also and that there is a linking factor for the whole Moon.  相似文献   

12.
A study of lunar impact crater size-distributions   总被引:3,自引:0,他引:3  
Discrepancies in published crater frequency data prompted this study of lunar crater distributions. Effects modifying production size distributions of impact craters such as surface lava flows, blanketing by ejecta, superposition, infilling, and abrasion of craters, mass wasting, and the contribution of secondary and volcanic craters are discussed. The resulting criteria have been applied in the determination of the size distributions of unmodified impact crater populations in selected lunar regions of different ages. The measured cumulative crater frequencies are used to obtain a general calibration size distribution curve by a normalization procedure. It is found that the lunar impact crater size distribution is largely constant in the size range 0.3 km ?D ? 20 km for regions with formation ages between ≈ 3 × 109 yr and ? 4 × 109 yr. A polynomial of 4th degree, valid in the size range 0.8 km ?D ? 20 km, and a polynomial of 7th degree, valid in the size range 0.3 km ?D ? ? 20 km, have been approximated to the logarithm of the cumulative crater frequencyN as a function of the logarithm of crater diameterD. The resulting relationship can be expressed asND α(D) where α is a function depending onD. This relationship allows the comparison of crater frequencies in different size ranges. Exponential relationships with constant α, commonly used in the literature, are shown to inadequately approximate the lunar impact crater size distribution. Deviations of measured size distributions from the calibration distribution are strongly suggestive of the existence of processes having modified the primary impact crater population.  相似文献   

13.
Ralph B. Baldwin 《Icarus》1974,23(2):157-166
Arguments based on changes in viscosity of the lunar outer layers, changes in crater shapes due to a cold flow process and changes in the flux of crater forming planetesimals indicate that the period of premare time during which the vast majority of craters, large and small, were formed was several hundred million years long. The craters of all sizes were formed in exponentially declining numbers during this period with a half life of about 88×106 yr.Recent work done by numerous students of RbSr, UPb and KAr ages of lunar rocks are beginning to recognize numerous events as having occured prior to the formation of Mare Imbrium and after the crust of the moon solidified.There was no major series of events which produced the “terminal lunar cataclysm” approximately 3.95×109 yr ago. The magnitude and timing of the Imbrium collision was the single overwhelming event at that time.  相似文献   

14.
The Imbrium sculpture texture, a distinctive ridged and furrowed pattern radial to the Imbrium basin and seen in other basins, has long been debated as to its origin (internal, formed by basin-related fractures; external, related to ejecta patterns). To test for the presence of deep radial fractures on the moon, the azimuth and length of linear rim segments of twenty-four post-Imbrium-basin craters were measured. Linear segments of crater rims parallel preexisting fracture patterns in terrestrial craters floored in an indurated substrate. Craters forming in a terrain containing pervasive fractures radial to Imbrium should show evidence of this tectonic influence by forming rim crest segments (terrace scarps) preferentially along these directions. No systematic relation of these segments with Imbrium radial structure was found. This suggests that the surface radial grooves may not extend to depth. The relatively young Orientale basin shows two types of radial structures: (1) pervasive subparallel ridges and furrows formed by a spectrum of sizes of secondary crater chains emanating from the main crater, and from flowage of material during secondary cratering; (2) parallel, generally radial ridges which appear to have formed on top of outward flows of debris. These types of radial textures (both depositional and erosional) appear unrelated to major faults or fractures. Therefore, these two lines of evidence suggest that much of the Imbrium-type sculpture surrounding major lunar basins is sedimentary, rather than tectonic, in origin.  相似文献   

15.
The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small (D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum’s chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.  相似文献   

16.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   

17.
To improve the scaling parameter controlling the impact crater formation in the strength regime, we conducted impact experiments on sintered snow targets with the dynamic strength continuously changed from 20 to 200 kPa, and the largest crater size formed on small icy satellites was considered by using the revised scaling parameter. Ice and snow projectiles were impacted on a snow surface with 36% porosity at an impact velocity from 31 m s−1 to 150 m s−1. The snow target was sintered at the temperature from −5 °C to −18 °C, and the snow dynamic strength was changed with the sintering duration at each temperature. We found that the mass ejected from the crater normalized by the projectile mass, πV, was related to the ratio of the dynamic strength to the impact pressure, , as follows: , where the impact pressure was indicated by P = ρtC0tvi/2 with the target density of ρt, when the impact velocity, vi, was much smaller than the bulk sound velocity C0t (typically 1.8 km s−1 in our targets). The ratio of the largest crater diameter to the diameter of the target body, dmax/D, was estimated by calculating the crater diameter at the impact condition for catastrophic disruption and then compared to the observed dmax/D of jovian and saturnian small satellites, in order to discuss the formation condition of these large dmax/D in the strength regime.  相似文献   

18.
Matija Ćuk 《Icarus》2012,218(1):69-79
The Moon has suffered intense impact bombardment ending at 3.9 Gyr ago, and this bombardment probably affected all of the inner Solar System. Basin magnetization signatures and lunar crater size-distributions indicate that the last episode of bombardment at about 3.85 Gyr ago was less extensive than previously thought. We explore the contribution of the primordial Mars-crosser population to early lunar bombardment. We find that Mars-crosser population initially decays with a 80-Myr half-life, with the long tail of survivors clustering on temporarily non-Mars-crossing orbits between 1.8 and 2 AU. These survivors decay with half-life of about 600 Myr and are progenitors of the extant Hungaria asteroid group in the same region. We estimate the primordial Mars-crosser population contained about 0.01–0.02 Earth masses. Such initial population is consistent with no lunar basins forming after 3.8 Gya and the amount of mass in the Hungaria group. As they survive longer and in greater numbers than other primordial populations, Mars-crossers are the best candidate for forming the majority of lunar craters and basins, including most of the Nectarian system. However, this remnant population cannot produce Imbrium and Orientale basins, which formed too late and are too large to be part of a smooth bombardment. We propose that the Imbrian basins and craters formed in a discrete event, consistent with the basin magnetization signatures and crater size-distributions. This late “impactor shower” would be triggered by a collisional disruption of a Vesta-sized body from this primordial Mars-crossing population (Wetherill, G.W. [1975]. Proc. Lunar Sci. Conf. 6, 1539–1561) that was still comparable to the present-day asteroid belt a 3.9 Gya. This tidal disruption lead to a short-lived spike in bombardment by non-chondritic impactors with a non-asteroidal size–frequency distribution, in agreement with available evidence. This body (“Wetherill’s object”) also uniquely matches the constraints for the parent body of mesosiderite meteorites. We propose that the present-day sources of mesosiderites are multi-km-sized asteroids residing in the Hungaria group, that have been implanted there soon after the original disruption of their parent 3.9 Gyr ago.  相似文献   

19.
Abstract— We have used data from the Clementine and Lunar Prospector spacecraft in conjunction with reflectance spectra collected with Earth‐based telescopes to study the geology of the Hadley‐Apennine portion of the lunar Imbrium basin. The Apennine Mountains and the Imbrium backslope are composed of Imbrium basin ejecta with a noritic or anorthositic norite composition. We find that the two major facies of Imbrium ejecta, the Apenninus material and the Alpes Formation, differ in iron and titanium content. “Pure” anorthosite has tentatively been identified in the ejecta of the crater Conon, based on low‐iron content. A difference in Th and rare earth element (REE) abundance between the northeast Apennine Mountains (lower) and the southwest Apennines (higher) is noted. Pyroclastic deposits are common in the region and are dominated by mare basalt material, probably plug rock ejected in vulcanian eruptions. The Apennine Bench Formation, which is likely to be a deposit of non‐mare volcanic material, has an Fe, Ti and Th composition consistent with that of Apollo 15 KREEP basalt samples thought to be fragments of the Bench. Aristillus crater is a Th and REE hot spot, and the stratigraphy of the impact target site has been reconstructed from knowledge of the composition of the crater interior and exterior deposits. We infer that the target consisted of highland basement, KREEP plutonics and volcanics, and both high‐ and low‐Ti mare basalt.  相似文献   

20.
Similarity is found in crater densities on the most heavily cratered surfaces throughout the solar system. This is hypothesized to result from a steady-state “saturation equilibrium” being approached or achieved by cratering processes. This hypothesis conflicts with some recent interpretations. However, it accounts for (1) a similarity in maximum relative crater density, below certain theoretically predicted values, on all heavily cratered surfaces; (2) a leveling off at this same relative density among 100-m scale (secondary?) craters in populations on lunar maria and other sparsely cratered lunar surfaces; (3) the approximate uniformity of maximum relative densities on Saturn satellites (in spite of dramatic variations predicted from nonsaturation models assuming heliocentric impactors). The lunar frontside upland crater population, sometimes described as a well-preserved production function useful for interpreting other planetary surfaces, is found not to be a production function. It was modified by intercrater plains formed (at least partly) by early upland basaltic lava flooding, recently confirmed spectrophotometrically. Consistent with this, counts in “pure uplands” (those lacking intercrater plains) match the proposed saturation equilibrium density. Variations among large (D > 64 km) crater populations are found, but these may involve several hypothesized mechanisms that rapidly obliterate large craters, especially on icy surfaces. Recent models, in which different populations of interplanetary bodies hit different planets, need further appraisal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号