首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为减少直接分析三维大尺度复杂土-结构动力相互作用问题的计算量,提高计算效率,本文直接从波动方程出发,提出了较常规子结构法更简单的两步简化计算过程,即第一步简化上部复杂结构体系为集中质量杆系模型,并求基础处等效输入,第二步通过等效输入求上部结构各位置的动力反应.其中第一步计算主要采用集中质量显式有限单元法结合局部透射人工...  相似文献   

2.
提出一种新的数值解与解析解耦合的理论和计算方法,研究土-结构相互作用(SSI)体系的地震动力响应。采用大型有限元软件OpenSees模拟复杂结构的非线性行为,用等效线弹性频域内解析解模拟地基土的行为,使用时域离散递归方法将频域内的解析解转化到时域内,再通过子结构边界上力和位移的协调条件来求解。二者之间的耦合和实时数据交流通过CS集成方法来实现。以一个单自由度算例和一个实际工程为例,验证此方法的精度、稳定性和工程实用性,对比在考虑和不考虑SSI体系情况下结构动力响应的区别。本文所提的耦合SSI计算方法和部分研究成果可为工程设计人员提供参考。  相似文献   

3.
本文研究了考虑桩-土-结构相互作用的输电塔-线体系在地震作用下的响应。根据实际工程,采用ABAQUS有限元软件,建立了考虑桩-土-结构相互作用效应的输电塔-线体系有限元模型。选取不同场地类型下的12条天然地震波,研究了不同地震波激励下考虑桩-土-结构相互作用效应输电塔-线体系动力响应。通过与考虑刚性基础的输电塔-线体系动力响应对比,得到了输电塔的薄弱位置,并提出了基于刚性基础的输电塔抗震放大系数,可为输电塔抗震设计提供参考。  相似文献   

4.
In this study, simplified numerical models are developed to analyze the soil-structure interaction (SSI) effect on frame structures equipped with viscoelastic dampers (VEDs) based on pile group foundation. First, a single degree-of-freedom (SDOF) oscillator is successfully utilized to replace the SDOF energy dissipated structure considering the SSI effect. The equivalent period and damping ratio of the system are obtained through analogical analysis using the frequency transfer function with adoption of the modal strain energy (MSE) technique. A parametric analysis is carried out to study the SSI effect on the performance of VEDs. Then the equilibrium equations of the multi degree-of-freedom (MDOF) structure with VEDs considering SSI effect are established in the frequency domain. Based on the assumption that the superstructure of the coupled system possesses the classical normal mode, the MDOF superstructure is decoupled to a set of individual SDOF systems resting on a rigid foundation with adoption of the MSE technique through formula derivation. Numerical results demonstrate that the proposed methods have the advantage of reducing computational cost, however, retaining the satisfactory accuracy. The numerical method proposed herein can provide a fast evaluation of the efficiency of VEDs considering the SSI effect.  相似文献   

5.
考虑地基土液化影响的桩基高层建筑体系地震反应分析   总被引:5,自引:2,他引:5  
本文建立了土体-结构体系地震反应分析的混合有限元法,并研究了地基土液化对地震反应的影响。本方法把土体-结构体系简化为一个完整的体系,该体系由梁(柱)单元、剪切杆单元、刚体单元、平面四边形等参单元与三角形单元、界面单元的任意组合来模拟。桩与上部结构材料视为线弹性体,土介质视为非线性材料。土的静应力-应变关系之间的非线性用邓肯一张模型来描述;土的动应力-应变关系之间的非线性和振动孔隙水压力对土的软化效  相似文献   

6.
Consideration of structure-foundation-soil dynamic interaction is a basic requirement in the evaluation of the seismic safety of nuclear power facilities. An efficient and accurate dynamic interaction numerical model in the time domain has become an important topic of current research. In this study, the scaled boundary finite element method (SBFEM) is improved for use as an effective numerical approach with good application prospects. This method has several advantages, including dimensionality reduction, accuracy of the radial analytical solution, and unlike other boundary element methods, it does not require a fundamental solution. This study focuses on establishing a high performance scaled boundary finite element interaction analysis model in the time domain based on the acceleration unit-impulse response matrix, in which several new solution techniques, such as a dimensionless method to solve the interaction force, are applied to improve the numerical stability of the actual soil parameters and reduce the amount of calculation. Finally, the feasibility of the time domain methods are illustrated by the response of the nuclear power structure and the accuracy of the algorithms are dynamically verified by comparison with the refinement of a large-scale viscoelastic soil model.  相似文献   

7.
The elastodynamic response of coupled soil-pile-structure systems to seismic loading is studied using rigorous three-dimentional (3D) finite element models. The system under investigation comprises of a single pile supporting a single degree of freedom (SDOF) structure founded on a homogeneous viscoelastic soil layer over rigid rock. Parametric analyses are carried out in the frequency domain, focusing on the dynamic characteristics of the structure, as affected by typical foundation properties such as pile slenderness and soil-pile relative stiffness. Numerical results demonstrate the strong influence on effective natural SSI period of the foundation properties and the crucial importance of cross swaying-rocking stiffness of the pile. Furthermore, the notion of a pseudo-natural SSI frequency is introduced, as the frequency where pile-head motion is minimized with respect to free field surface motion. Dynamic pile bending is examined and the relative contributions of kinematic and inertial interaction, as affected by the frequency content of input motion, are elucidated.  相似文献   

8.
The direct finite element method is a type commonly used for nonlinear seismic soil-structure interaction(SSI) analysis. This method introduces a truncated boundary referred to as an artificial boundary meant to divide the soilstructure system into finite and infinite domains. An artificial boundary condition is used on a truncated boundary to achieve seismic input and simulate the wave radiation effect of infinite domain. When the soil layer is particularly thick, especially for a three-dimensional problem, the computational efficiency of seismic SSI analysis is very low due to the large size of the finite element model, which contains an whole thick soil layer. In this paper, an accurate and efficient scheme is developed to solve the nonlinear seismic SSI problem regarding thick soil layers. The process consists of nonlinear site response and SSI analysis. The nonlinear site response analysis is still performed for the whole thick soil layer. The artificial boundary at the bottom of the SSI analysis model is subsequently relocated upward from the bottom of the soil layer(bedrock surface) to the location nearest to the structure as possible. Finally, three types of typical sites and underground structures are adopted with seismic SSI analysis to evaluate the accuracy and efficiency of the proposed efficient analysis scheme.  相似文献   

9.
基于水平摇摆阻尼系统模型,建立土-层间隔震结构简化分析模型,将地基土等效到上部结构,推导得到简化模型动力特性参数表达式,并通过对结构周期比及振型参与位移进行分析,讨论质量比及土体剪切波速对层间隔震结构自振特性的影响规律。利用虚拟激励法及均匀调制非平稳随机响应分析方法,分别从时域和频域角度分析不同场地条件下SSI效应对层间隔震结构的振动响应影响。结果表明:在刚性地基下,结构质量比对结构周期比及振型参与位移的影响较小,SSI效应放大了各子结构响应,尤其对下部子结构响应影响最大,各子结构在场地土差异下变化明显,软土场地下各子结构响应变大。  相似文献   

10.
提出一种基于土-结构体系地震记录的土-结构相互作用(SSI)的减震评估方法。该方法采用简化的SSI模型,通过系统辨识确定模型参数。将上部建筑结构地震反应的SSI减震效应分解为惯性相互作用和运动相互作用,同时还提出由惯性相互作用和运动相互作用单独降低结构响应的方法。将2011年东北地震太平洋沿岸期间两栋中层建筑用此方法进行分析,结果表明:当建筑物结构响应进入非弹性范围时,惯性相互作用的减震效果降低。  相似文献   

11.
A parallel soil–structure interaction (SSI) model is presented for applications on distributed computer systems. Substructring method is applied to the SSI system and a coupled finite–infinite element based parallel computer program is developed. In the SSI system, infinite elements are used to represent the soil which extends to infinity. In this case, a large finite element mesh is required to define the near field for reliable predictions. The resulting large-scale problems are solved on distributed computer systems in this study. The domain is represented by separated substructures and an interface. The number of substructures are determined by the available processors in the parallel platform. To avoid the formation of large interface equations, smaller interface equations are distributed to processors while substructure contributions are performed. This saves a lot of memory storage and computational effort. Direct solution techniques are used for the solution of interface and substructure equation systems. The program is investigated through some example problems. The example problems exposed the need for solving large-scale problems in order to reach better results. The results of the example problems demonstrated the benefits of the parallel SSI algorithm.  相似文献   

12.
A differential equation is formulated for the dynamic response of ground medium by using a simplified ground model. Applying Galerkin's procedure for weighted residual, this equation leads to a governing equation only at the ground surface. The equation indicates that the ground surface behavior can be computed even further by a simplified model. By solving the governing equation for the boundary conditions along the surface, expressions in simple closed forms are developed for the dynamic response analysis of a massless rigid foundation that rests on the ground surface. Despite their significant simplicity, the developed expressions compute the values very close to those computed by far more complex rigorous solutions. They are found to be capable of capturing the important characteristics of the dynamic ground behavior well.  相似文献   

13.
本文基于可信概率水准的破坏性强震作用,针对小湾高拱坝进行了考虑坝体材料非线性的拱坝地震反应分析。在分析模型中,同时考虑了无约束域地震能量辐射效应和近域地基材料非均匀性的影响。为了实现非线性条件下的静、动力组合分析,利用显式有限元结合修正的黏弹性人工边界的开放系统时域静、动力统一分析方法进行了求解,对在自重作用下的初始静力解计算采用了动力松弛技术。  相似文献   

14.
以弹性基岩上覆层状场地中刚性衬砌隧道为模型,采用间接边界元方法求解衬砌隧道所受的沿轴向地震动土作用,通过参数分析揭示轴向动土作用的幅值大小、空间分布等基本规律。研究表明,土-隧道动力相互作用对地震动土作用的空间分布形式影响较小,但对地下隧道所受地震动土作用峰值大小具有显著影响,隧道主要位置点的地震动土作用峰值与隧道相应位置处自由场土层应力相比放大1.7~2.4倍。论文最后提出一个轴向地震动土作用的简化计算方法。  相似文献   

15.
The dynamic response of three-dimensional rigid surface foundations of arbitrary shape is numerically obtained. The foundations are placed on a linear elastic, isotropic and homogeneous half-space representing the soil medium and are subjected to either external dynamic forces or seismic waves of various kinds and directions, with a general transient time variation. The problem is formulated in the time domain by the boundary element method and the response is obtained by a time step-by-step integration. Two examples dealing with three-dimensional rectangular foundations are presented in detail, together with comparisons with other methods, in order to document the accuracy of the method. The main advantages of the proposed method are that, unlike frequency domain techniques, it provides directly the transient response and forms the basis for extension to the case of non-linear behaviour.  相似文献   

16.
A general formulation and solution procedure are proposed for harmonic response of rigid foundation on multilayered half-space. It is suitable for isotropic as well as anisotropic soil medium. The wave motion equation is formulated in frequency wave-number domain in the state space. A hybrid approach is proposed for its solution, where the precise integration algorithm (PIA) is employed to carry out the integration. Very high accuracy can be achieved. The mixed variable form of wave motion equation enables the assembly of layers simple and convenient. The surface Green׳s function is regarded as rigorous, because it is free from approximations and discretization errors. The algorithm is unconditionally stable. The numerical implementation is based on algebraic matrix operation. Numerical examples of vibration of rigid foundation validate the efficiency and accuracy of the proposed approach.  相似文献   

17.
It is important to estimate the influence of layered soil in soil–structure interaction analyses. Although a great number of investigations have been carried out on this subject, there are very few practical methods that do not require complex calculations. In this paper, a simple and practical method for estimating the horizontal dynamic stiffness of a rigid foundation on the surface of multi‐layered soil is proposed. In this method, waves propagating in the soil are traced using the conception of the cone model, and the impulse response function can be calculated directly and easily in the time domain with a good degree of accuracy. The characteristics of the impedance, that is the transformed value to the frequency domain of the obtained impulse response, are studied using two‐ to four‐layered soil models. The cause of the fluctuation of impedance is expressed clearly from its relation to reflected waves from the lower layer boundary in the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In order to perform time history earthquake response analyses with consideration to both the dynamic soil–structure interaction and the non‐linear behaviour of the structure, it is important to transform the soil impedance in the frequency domain to the impulse response in the time domain. In this paper, a new transform method with high practicality is proposed. First, the formulation of the proposed transform method is described. Next, the validity of the method is examined using an example problem whose impulse response is analytically obtained. Then, the impedance of the rigid foundation on 2‐layered soil is transformed to the time domain, and the characteristics of the impulse response are investigated. Finally, time history earthquake response analyses of a structure on the soil using the obtained impulse response are carried out. The validity and the efficiency of the proposed method are confirmed through these investigations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   

20.
大跨度预应力混凝土连续刚构桥的动力特性分析   总被引:20,自引:0,他引:20  
介绍了福建泉州后渚大桥——大跨度预应力混凝土连续刚构桥的现场环境振动实验.并利用频域中的单模态识别法(SDOFI)、峰值法(PP)和时域中的随机子空间识别法(SSI)分别进行桥梁动力特性识别。利用ANSYS建立了全桥三维有限元模型并进行了理论模态分析,基于参数分析和环境振动测试结果对有限元模型进行了标定,建立了该桥的基准有限元模型,该模型可服务于桥梁长期健康监测与状态评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号