首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper reports the first research on karst solution processes and rates in New Zealand. The study area is an IHD representative basin in the northwest corner of the South Island in a mountain range consisting principally of Ordovician marble. The climate is sunny and warm (17°C) in summer and wet and cool (7°C) in winter. Average precipitation is 2,158 mm of which 525 mm evapotranspires, yielding a discharge of 51–75 l/s/km2 in the river basin studied. Almost half of the catchment of 45.1 km2 consists of karst which occurs mainly as a doline covered plateau at 600–900 m within which most drainage is subterranean. Water tracing is with fluorescein defined drainage patterns. Marble solution was established by estimating inputs, throughputs and outputs of water and dissolved calcium and magnesium in both autogenic and allogenic karst drainage systems. Particular attention was paid to estimating errors. Water samples for chemical analysis were taken irregularly for approximately one year, and a rating curve relating chemical load to discharge was established. The best estimate of solution loss from the basin yields a mean rate of 100 ±M24 m3/km2/a. Of this 80 per cent is derived from solution of marble by autogenic waters, mostly in the top 10–30 m of the marble outcrop. The remaining 20 per cent is accomplished by allogenic stream solution. Approximately 9.9 per cent of the dissolved calcium and magnesium load leaving the basin originates from non-karst rocks and 4.6 per cent is initially introduced by rainfall. River flows that are exceeded only 5 per cent of the time transport approximately 44 per cent of the annual dissolved load, while mean to low flows that occur for 75 per cent of the time transport 35 per cent of the annual solute load. This confirms the importance of low frequency-high magnitude events, but indicates also that in corrosion systems high frequency events of moderate to low magnitude can also accomplish significant work.  相似文献   

2.
The grass-covered slopes on the southern flank of Mt Thomas, an upfaulted block of highly sheared sandstone and argillite 40 km NW of Christchurch, New Zealand, are presently undergoing severe erosion by a combination of mass-wasting processes. Gully erosion, soil slips, and debris flows have carved out a number of steep, deeply incised ravines, from which coarse debris is transported (primarily by debris flows) to alluvial fans below. Geologic and historical evidence indicates that debris flows have been episodically active here for at least the last 20,000 years and have been the dominant process in fan building. This demonstrates that catastrophic geomorphic processes, rather than processes acting at relatively uniform rates, can be dominant in humid-temperate areas as well as in arid and semi-arid regions. In April 1978, debris flows were triggered in one of two unstable ravines in the Bullock Creek catchment by a moderate intensity, long duration rainstorm with a return period in excess of 20 years. Surges of fluid debris, moving at velocities up to 5 m/s, transported a dense slurry of gravel, sand, and mud up to 3·5 km over a vertical fall of 600 m. Deposition on the alluvial fan occurred when the flows left the confines of an entrenched fan-head channel and spread out as a 0·16 km2 sheet averaging 1·2 m thick. In all, 195,000 m3 were deposited, roughly a third of that being reworked sediments from the head of the fan. Sediment yield from this one event would be equivalent to several thousand years worth of erosion at average sediment discharge rates for small South Island mountain catchments. Samples of viscous fluid debris during surges contained up to 84 per cent solids, composed of 70 per cent gravel, 20 per cent silt, and 4 per cent clay. Fluid density of the material ranged between 1·95 and 2·13 g/cm3, and it was extremely poorly sorted. Between surges the fluid was less viscous, less dense, and unable to carry gravel in suspension. Severe fan-head entrenchment of the stream channel (approximately 10 m in less than 24 hours) was accomplished by the erosive action of the surges. Tectonic uplift of the Mt Thomas block and the weak, crushed condition of the bedrock appear to be ultimately responsible for the catastropic erosion of slopes in the Bullock Creek catchment. However, forest clearing within the last few centuries appears to have greatly increased the rate of mass wasting and gully erosion on these slopes.  相似文献   

3.
A sediment budget was developed for the 1.7 km2 Maluna Creek drainage basin located in the Hunter Valley, New South Wales, Australia, for the period 1971-86. the impact of viticulture, which commenced at Maluna in 1971, was studied using erosion plots, with caesium-137 as an indicator of both soil erosion and sedimentation. Two methods were used to estimate vineyard soil losses from caesium-137 measurements. Sediment output from the catchment was measured for three years, and extrapolated from readings taken at a nearby long-term stream flow gauging station for the remaining 13 years. Relative amounts of soil loss from forest (60 per cent basin area), grazing land (30 per cent) and vineyards (10 per cent) were calculated. Soil losses by rain splash detachment were ten times greater from bare/cultivated sufaces than from the forest. Erosion plots of area 2 m2 showed no significant differences in soil loss between forest and grassland but, under bare soil, losses were 100 times greater. the 137Cs method was employed to calculate net soil loss from all vineyard blocks using both a previously established calibration curve and a proportional model. the latter method gave estimates of soil loss which were 3-9 times greater than by the calibration curve, and indicated that average soil losses from the vineyard were equivalent to 62 t ha?1 y?1 (1971-86). It was estimated that the forest contributed 1-8 per cent, the grazing land 1.6 per cent, and the vineyard 96.6 per cent of the total soil loss during that period. Sediment storages within the fluvial system adjacent to the vineyard ws 9460 t for the period, whereas sediment output was equivalent to 215 t km?1 y?1. Independent measurements of soil erosion, storage, and output showed that 56 per cent of the eroded sediment remained in the catchment, and 34 per cent was transported out by Maluna Creek. the budget was able to be balanced to within 10 per cent.  相似文献   

4.
The wide range of studies describing the role of bank erosion in fluvial sediment supply have mostly lumped amounts of bank erosion into coarse temporal units, such as years. This paper investigates sediment yields from individual bank erosion events within the upper River Severn, UK (basin area 380 km2). Manual erosion pins and photo-electronic erosion pins were used to estimate bank erosion, and turbidity meters were used to determine suspended sediment transport. At the annual time-scale, the silt-clay fraction of bank-derived sediment accounted for an equivalent of 17 per cent of the suspended load, increasing to an average of 38 per cent at the monthly timescale, and then to an average of 64 per cent at the event timescale. This research highlighted that for an upland catchment, bank erosion was an important supply of suspended sediment, and that for some flood events bank erosion can supply more sediment than is transported. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
Exposed roots were used to estimate soil and bedrock erosion on the cut slopes of a 45-year-old road constructed in granitic soils of the Idaho Batholith. The original roadcut surface was defined by projecting a straight line from the toe of the cut past the end of the exposed root to the intersection of a straight line projected along the surface of the hillslope. A cross-sectioning technique was then used to determine erosion to the present roadcut surface. A total of 41 exposed root sites were used to estimate erosion on a 1350 m-long section of road. Average erosion was 1·0 and 1·1 cm/year for soil and bedrock respectively. Buttressing by tree roots caused lower erosion rates for soil as compared to bedrock. Both soil and bedrock erosion rates showed statistically significant correlations with the gradients of the original cut slope. The bedrock erosion data provide a reasonable estimate of the disintegration rate of exposed granitic bedrock exhibiting the weathering and fracturing properties common to this area. The road is located in a study watershed where long-term sediment yield data are available. Sediment data from adjacent study watersheds with no roads were compared to sediment data from the roaded watershed to estimate the long-term increase in sediment yield caused by the road. The increase amounts to about 2·4 m3/year. This figure, compared to the average annual on-site road erosion, provides an erosion to sediment delivery ratio of less than 10 per cent. Based on study results, road construction and maintenance practices are suggested for helping reduce roadcut erosion.  相似文献   

6.
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre‐fire rates. The maximum unit‐area peak discharge was 24 m3 s?1 km?2 for a rainstorm in 1996 with a rain intensity of 90 mm h?1. Recovery to pre‐fire conditions seems to have occurred by 2000 because for a maximum 30‐min rainfall intensity of 50 mm h?1, the unit‐area peak discharge in 1997 was 6.6 m3 s?1 km?2, while in 2000 a similar intensity produced only 0.11 m3 s?1 km?2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200‐fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

7.
The prediction of wind erosion and dust emissions is important for controlling erosion and identifying dust sources in arid and semiarid regions of the world. This study predicts quantitatively wind erosion and dust emissions in Xinjiang Province, central Asia. The wind erosion prediction system (WEPS) was used to simulate annual soil and PM10 (particulate matter ≤10 μm in aerodynamic diameter) loss at 64 meteorological stations across the province. Soil and PM10 loss were simulated from bare surfaces at all 64 stations and from cotton and wheat fields at 11 stations. Simulated annual bare soil and PM10 loss were lowest in the Junggar (soil and PM10 loss were, respectively, 121.7 and 7.6 kg m-2) and Tarim basins (soil loss was 78.2 kg ha-1 and PM10 loss was 6.5 kg m-2) and highest in the Tu-ha Basin (soil and PM10 loss were, respectively, 638.2 and 37.7 kg m-2). Stations with the highest annual soil loss in the Tarim and Tu-ha basins also had the highest number of days with wind speeds >8 m s-1. This indicated wind influenced erosion, but other factors such as soil type also affect wind erosion. The maximum monthly bare soil and PM10 loss occurred in May in the three basins, substantiating that dust storms occur most frequently during spring in the region. Simulated soil and PM10 loss were lower for cotton and wheat than bare soil, thus suggesting that maintaining vegetative cover during a portion of the year provided some protection to the soil surface from wind erosion. © 2018 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

The spatial variability of the factors of the universal soil loss equation is examined on the mediterranean basin of Conca de Tremp covering 43.1 km2 in Spain. The evaluation of the rainfall erosivity R and the soil erodibility K is relatively straightforward and spatially-averaged values of these parameters can be applied to the entire basin. Conversely, the spatial variability of annual soil erosion losses on large basins depends primarily on the factors L, S and C describing topographic, vegetation and land use parameters. A grid size analysis of soil erosion losses from the Conca de Tremp basin under mediterranean climatic conditions in Spain shows excellent agreement with the earlier results on the Chaudière basin in Canada. It is concluded for both basins that unbiassed estimates of soil erosion losses are obtained for grid sizes less than about 0.125 km2. The analysis of the Conca de Tremp basin validates the use of the grid size factor proposed by Julien & Frenette (1987). It is also found that the grid size factor primarily depends on the average slope gradient which decreases with increasing grid size or drainage area. On the other hand, the grid size factor does not depend on the spatial variability of the factors R, K, L and C.  相似文献   

9.
The relationship of hillslope erosion rates and sediment yield is often poorly defined because of short periods of measurement and inherent spatial and temporal variability in erosion processes. In landscapes containing hillslopes crenulated by alternating topographic noses and hollows, estimates of local hillslope erosion rates averaged over long time periods can be obtained by analysing colluvial deposits in the hollows. Hollows act as local traps for a portion of the colluvium transported down hillslopes, and erosion rates can be calculated using the age and size of the deposits and the size of the contributing source area. Analysis of colluvial deposits in nine Oregon Coast Range hollows has yielded average colluvial transport rates into the hollows of about 35cm3cm?1yr?1 and average bedrock lowering rates of about 0.07 mm yr?1 for the last 4000 to 15000 yr. These rates are consistent with maximum bedrock exfoliation rates of about 0.09 mm yr?1 calculated from six of the hollows, supporting the interpretation that exfoliation rates limit erosion rates on these slopes. Sediment yield measurements from nine Coast Range streams provide similar basin-wide denudation rates of between 0.05 and 0.08mm yr?1, suggesting an approximate steady-state between sediment production on hillslopes and sediment yield. In addition, modern sediment yields are similar in basins varying in size from 1 to 1500 km2, suggesting that erosion rates are spatially uniform and providing additional evidence for an approximate equilibrium in the landscape.  相似文献   

10.
The Yarlung Tsangpo River, which flows from west to east across the southern part of the Tibetan Plateau, is the longest river on the plateau and an important center for human habitation in Tibet. Suspended sediment in the river can be used as an important proxy for evaluating regional soil erosion and ecological and environmental conditions. However, sediment transport in the river is rarely reported due to data scarcity. Results from this study based on a daily dataset of 3 years from four main stream gauging stations confirmed the existence of great spatiotemporal variability in suspended sediment transport in the Yarlung Tsangpo River, under interactions of monsoon climate and topographical variability. Temporally, sediment transport or deposition mainly occurred during the summer months from July to September, accounting for 79% to 93% of annual gross sediment load. This coincided with the rainy season from June to August that accounted for 51% to 80% of annual gross precipitation and the flood period from July to September that accounted for approximately 60% of annual gross discharge. The highest specific sediment yield of 177.6 t/km2/yr occurred in the upper midstream with the highest erosion intensity. The lower midstream was dominated by deposition, trapping approximately 40% of total sediment input from its upstream area. Sediment load transported to the midstream terminus was 10.43 Mt/yr with a basin average specific sediment yield of 54 t/km2/yr. Comparison with other plateau‐originated rivers like the upper Yellow River, the upper Yangtze River, the upper Indus River, and the Mekong River indicated that sediment contribution from the studied area was very low. The results provided fundamental information for future studies on soil and water conservation and for the river basin management. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The Cesium-137 technique was used to estimate soil erosion in the Xihanshui River Basin.More than 100 samples were taken from 10 sites and 20 hillslopes with a 10cm diameter hand-operated core driller.Each sample was 60 cm long.The 137Cs activity was analyzed by gamma spectrometry.The simplified mass balance model and the profile distribution model were used to calculate soil erosion and deposition rate.The local 137Cs reference ranged from 1,600 to 2,402 Bq m-2.The data shows an exponential decrease of mass concentration and amount with depth in an undisturbed soil profile.Soil erosion in the river basin is moderate or severe on cultivated land with annual erosion rates of 2,000-6,000 t km-2yr-1.In general,very severe or severe soil erosion occurred at the upper slope sections,moderate or severe soil erosion at the middle section,and moderate or slight soil erosion at the lower slope sections.On the slopes with natural vegetation,consisting of herbaceous and wood species,the erosion rate is much lower or not detectable.On the lower section of slopes with well-developed vegetation however,there was no soil loss,instead deposition occurred at a rate of more than 300 t km-2 yr-1.The slope gradient and vegetation cover affected soil erosion and deposition rates.In general,the rate of soil erosion was proportional to the slope gradient and inversely proportional to the degree of vegetative cover.  相似文献   

12.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
In this study our main objective was to quantify water interrill erosion in the sloping lands of Southeast Asia, one of the most bio‐geochemically active regions of the world. Investigations were performed on a typical hillslope of Northern Laos subjected to slash and burn agriculture practiced as shifting cultivation. Situations with different periods of the shifting cultivation cycle (secondary forest, upland rice cultivation following a four‐year fallow period and three‐year continuous upland rice cultivation) and soil orders (Ultisols, Alfisols, Inceptisols) were selected. One metre square micro‐plots were installed to quantify the soil material removed by either detachment of entire soil aggregate or aggregate destruction, and the detached material transported by thin sheet flow, the main mechanisms of interrill erosion. In addition, laboratory tests were carried out to quantify the aggregate destruction in the process of water erosion by slaking, dispersion and mechanical breakdown. The average runoff coefficient (R) evaluated throughout the 2002 rainy season was 30·1 per cent and the interrill erosion was 1413 g m?2 yr?1 for sediments and 68 g C m?2 yr?1 for soil organic carbon, which was relatively high. Among the mechanisms of interrill water erosion, aggregate destruction was low and mostly caused by mechanical breakdown due to raindrops, thus leading to the conclusion that detachment and further transport by the shallow runoff of macro‐aggregates predominates. R ranged from 23·1 to 35·8 per cent. It decreased with the proportion of mosses on the soil surface and soil surface coverage, and increased with increasing proportion of structural crust, thus confirming previous results. Water erosion varied from 621 to 2433 g m?2 yr?1 for sediments and from 31 to 146 g C m?2 yr?1 for soil organic carbon, and significantly increased with increasing clay content of the surface horizon, probably due to the formation of easily detachable and transportable sand‐size aggregates, and proportion of macro‐aggregates not embedded in the soil matrix and prone to transport. In addition, water erosion decreased with increasing proportion of structural crusts, probably due to their higher hardness, and when cultivation follows a fallow period rather than after a long period of cultivation due to the greater occurrence of algae on the soil surface, which affords physical protection and greater aggregate stability through binding and gluing. This study based on simultaneous field and laboratory investigations allowed successful identification and quantification of the main erosion mechanisms and controlling factors of interrill erosion, which will give arguments to further set up optimal strategies for sustainable use of the sloping lands of Southeast Asia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Rainfall, slopewash (the erosion of soil particles), surface runoff and fine-litter transport steepland sites in the Luquillo Experimental Forest, Puerto Rico (18° 20’ N, 65° 45’ W) were measured from 1991 to 1995. Hillslopes underlain by (1) Cretaceous tuffaceous sandstone and silstone in subtropical rain (tanonuco) forest with vegetation recovering from Hurricane Hugo (1989), and (2) Tertiary quartz diorite in subtropical lower mantone wet (colorado and dwarf) forest with undisturbed forest canopy were compared to recent landslide scars. Monthly surface runoff on these very steep hillslopes (24° to 43°) was only 0·2 to 0·5 per cent of monthly rainfall. Slopewash was higher in sandy loam soils whose parent material is quartz diorite (averaging 46 g m−2 a−1) than in silty clay loam soils derived from tuffaceous sandstone and siltstone where the average was 9 g m−2 a−1. Annual slopewash of 100 to 349 g m−2 on the surfaces of two recent, small landslide scars was measured initially but slopewash decreased to only 3 to 4 g m−2 a−1 by the end of the study. The mean annual mass of fine litter (mainly leaves and twigs) transported downslope at the forested sites ranged from 5 to 8 g m−2 and was lower at the tabonuco forest site, where post-Hurricane Hugo recovery is still in progress. Mean annual fine-litter transport was 2·5 g m−2 on the two landslide scars. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The contribution from agricultural catchments to stream nitrogen and phosphorus concentrations was assessed by evaluation of the chemical composition of these nutrients in agricultural runoff for both surface and subsurface flow pathways. A range of land uses (grazed and ungrazed grassland, cereals, roots) in intensive agricultural systems was studied at scales from hillslope plots (0.5 m2) to large catchment (>300 km2). By fractionating the total nutrient load it was possible to establish that most of the phosphorus was transported in the unreactive (particulate and organic) fraction via surface runoff. This was true regardless of the scale of measurement. The form of the nitrogen load varied with land use and grazing intensity. High loads of dissolved inorganic nitrogen (with >90% transported as NH4-N) were recorded in surface runoff from heavily grazed land. In subsurface flow from small (2 km2) subcatchments and in larger (>300 km2) catchments, organic nitrogen was found to be an important secondary constituent of the total nitrogen load, comprising 40% of the total annual load.  相似文献   

17.
Among the different controls of erosion budget at basin level, the relative impact of dams and land management is yet to be investigated. In this paper, the impact of dams on sediment yield has been assessed by using a conceptual modelling framework which considers the gross erosion and the cascade of dams constructed on a river network. The sediment budget has been estimated based on the gross erosion, deposition of sediment in reservoirs, and sediment yields of 23 mainland river basins of India. The gross erosion of the country is estimated as 5.11 ± 0.4 Gt yr?1 or 1559 t km?2 yr?1, out of which 34.1 ± 12% of the total eroded soil is deposited in the reservoirs, 22.9 ± 29% is discharged outside the country (mainly to oceans), and the remaining 43.0 ± 41% is displaced within the river basins. The river basins of northern India contribute about 81% of the total sediment yield from landmass while the share of southern river basins is 19%. The components of revised sediment budget for India are prominently influenced by the sediment trapped in reservoirs and the treatment of catchment areas by soil and water conservation measures. Analysis of sediment deposition in 4937 reservoirs indicated the average annual percentage capacity loss as 1.04% though it varies from 0.8% to >2% per year in smaller dams (1–50 Mm3 capacity) and from <0.5% to 0.8% per year in larger dams (51 to >1000 Mm3 capacity). Siltation of smaller dams poses a serious threat to their ecosystem services as they cater to a wider population for domestic, agricultural, and industrial purposes. Amongst the environment controls, land use significantly impacts the gross erosion rate and specific sediment yield as compared to climatic and topographic parameters. However, to analyse their integrated effect on the complex processes of sediment fluxes in a basin, further research efforts are needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This study analyses large wood (LW) storage and the associated effects on channel morphology and flow hydraulics in three third‐order mountain basins (drainage area 9–12 km2) covered in old‐growth Nothofagus forests, ranging from the temperate warm Chilean Andean Cordillera to the sub‐Antarctic Tierra del Fuego (Argentina). Amount, characteristics and dimensions of large wood (>10 cm diameter, >1 m long) were recorded, as well as their effects on stream morphology, hydraulics and sediment storage. Results show that major differences in LW abundance exist even between adjacent basins, as a result of different disturbance histories and basin dissection. Massive LW volumes (i.e. >1000 m3 ha?1) can be reached in basins disturbed by fires followed by mass movements and debris flows. Potential energy dissipation resulting from wood dams is about a quarter of the total elevation drop in two streams, with a gross sediment volume stored behind wood dams of around 1000 m3 km?1, which appears to be of the same order as the annual sediment yield. Finally, the presence of wood dams may increase flow resistance by up to one order of magnitude. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The study aims to investigate the effect of soil properties delineation on erosion modelling. To that end, the soil attributes of the Venetikos River catchment, northwestern Greece, are described using two pedological datasets, i.e. field samples and classification maps. The goal is to select the most appropriate for the accurate estimation of erosion. The Revised Morgan-Morgan-Finney (RMMF) model is developed per base map (annual or multi-annual), keeping all other parameters unchanged. Modelled sediment yield (SY) values are validated against “observed” ones, calculated utilizing the sediment rating curve methodology. Overall, the classification maps approach (164.35 t km-2 year?1) performed better than the soil samples one (82.97 t km-2 year?1), displaying higher convergence to the synthetic SY (548.9 t km-2 year?1). The discrepancy among approaches is attributed to the different computation methodologies (thus pedological background) used. Both approximations successfully identified the high-risk erosion areas. The same conclusions arose from the multi-annual application of the model.  相似文献   

20.
A sediment budget for the Late Glacial and Holocene periods was calculated for the Lac Chambon watershed which is located in a formerly glaciated temperate crystalline mountain area. It appears that over 15 500 years: (1) 69 per cent of eroded particles have been displaced by gravity processes and then stored within the watershed, compared to 31 per cent that have been displaced by running water and evacuated outward; (2) the mean mechanical erosion due to gravity processes on the slopes amounted to 16·1 ±6 m and only developed on a quarter of the watershed surface, whereas the mean mechanical erosion due to running water amounted 1·24 ± 0·37 m and involved the whole watershed surface. The mean sediment yields due to gravity processes on slopes were 2300 ± 1360, 1770 ± 960 and 380 ± 100 m3 km−3 a−1, respectively, for basalts, and basic and acidic trachyandesites. Values of sediment yield due to running water were 49±15, 120±36 and 79±24 m3 km−2 a−1, respectively, during the Bôlling–Allerôd, the Younger Dryas and the Pre-Boreal–Boreal periods. They were 56±17 and 166±50 m3 km−2 a−1 during the Sub-Atlantic period before and after 1360 a BP , respectively. These values reflect variations in the natural environment and the impact of human-induced deforestation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号