首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vertical dynamic response of a disk on a saturated poroelastic half-space   总被引:2,自引:0,他引:2  
This paper considers the vertical dynamic response of a disk on a saturated poroelastic half-space. Firstly the pressure-solid displacement form of the harmonic equations of motion for a poroelastic solid are developed from the form of the equations originally presented by Biot. These equations are solved by a new method. Then the mixed boundary value problem for the vertical harmonic vibration of a disk on a poroelastic half-space is studied. The two types of drainage conditions at the surface of the poroelastic half-space are considered: (a) the surface of the poroelastic half-space is assumed to be completely pervious both within and exterior to the plate; (b) The interface between the plate and the poroelastic half-space is assumed to be impervious and the exterior region is assumed to be pervious. By using the Hankel transform techniques, the paper develops the governing dual integral equations. These governing integral equations are further reduced to systems of standard Fredholm integral equations of the second kind by Abel transform.  相似文献   

2.
Rocking vibrations of rigid disk on saturated poroelastic medium   总被引:2,自引:0,他引:2  
The dynamic response of a rigid disk on a saturated poroelastic half space and subjected to harmonic rocking excitation is studied. The mixed boundary-value problem for the case of relaxed contact condition between the disk and the poroelastic half space is reduced to a Fredholm integral equation of the second kind, which is solved numerically. The dynamic compliance coefficient for the rocking vibration of a rigid disk on a poroelastic half space is presented.  相似文献   

3.
A truck–pavement–ground coupling model was established to study the dynamic responses of a saturated poroelastic half-space generated by a moving heavy truck on the uneven pavement. The ground was simulated as a fully saturated poroelastic half-space governed by Biot’s theory. The overlying pavement was simplified as a Kirchhoff thin plate. With the assumption of a sinusoidal pavement surface, the dynamic wheel–pavement force was obtained through a linear Hertizian contact model. The numerical results showed that this dynamic load could make considerable contributions to the stress and excess pore water pressure responses in the ground. Furthermore, the effective stress path of the soil unit beneath the pavement caused by the moving truck was firstly calculated and presented. It was found that the differences between the total stress path and the effective stress path became significant as the truck speed increased, thus the effective stress path was more suitable than total stress path to reflect the stress history of soil elements in the saturated ground during the passage of high-speed traffics.  相似文献   

4.
A comprehensive analytical solution is developed to examine the torsional vibration of an elastic foundation on a semi-infinite saturated elastic medium for the first time. First, the governing equations of saturated media are solved by use of Hankel transform techniques. Then, based on the assumption that the contact between the foundation and the half-space is perfectly bonded, this dynamic mixed boundary-value problem can lead to dual integral equations, which are further reduced to the standard Fredholm integral equations of the second kind and solved by numerical procedures. Numerical examples are given at the end of the paper. The numerical results indicate that the response of the elastic foundation strongly depends on the material and geometrical properties of both the saturated soil-foundation system and the load acting on the foundation. In most of the cases, the dynamic behavior of an elastic foundation on saturated media significantly differs from that of a rigid plate bearing on the elastic half-space.  相似文献   

5.
A half-space containing horizontally multilayered regions of different transversely isotropic elastic materials as well as a homogeneous half-space as the lowest layer is considered such that the axes of material symmetries of different layers and the lowest half-space to be as depth-wise. A rigid circular disc rested on the free surface of the whole half-space is considered to be under a forced either vertical or horizontal vibration of constant amplitudes. Because of the involved integral transforms, the mixed boundary value problems due to mixed condition at the surface of the half-space are changed to some dual integral equations, which are reduced to Fredholm integral equations of second kind. With the help of contour integration, the governing Fredholm integral equations are numerically solved. Some numerical evaluations are given for different combinations of transversely isotropic layers to show the effect of degree of anisotropy of different layers on the response of the inhomogeneous half-space.  相似文献   

6.
This paper addresses the horizontal vibration of a rigid disk embedded in a poroelastic half-space in contact with a fluid half-space using the poroelastic theory of potentials. The solution of this problem is expressed in terms of dual integral equations that are converted into Fredholm integral equations of the second kind and solved numerically. Selected numerical results for the horizontal dynamic impedance coefficient are examined based on different poroelastic materials, embedment depths, and excitation frequencies; furthermore, the results are analyzed for the cases in which there is and is no fluid overlying the poroelastic medium to examine the effect of fluid. The results of this study are helpful for designing a foundation embedded in the seabed due to dynamic horizontal forces.  相似文献   

7.
The dynamic analysis of a surface rigid foundation in smooth contact with a transversely isotropic half-space under a buried inclined time-harmonic load is addressed. By virtue of the superposition technique, appropriate Green׳s functions, and employing further mathematical techniques, solution of the mixed-boundary-value problem is expressed in terms of two well-known Fredholm integral equations. Two limiting cases of the problem corresponding to the static loading and isotropic medium are considered and the available results in the literature are fully recovered. For the static case, the results pertinent to both frictionless and bonded contacts are obtained and compared. With the aid of the residue theorem and asymptotic decomposition method, an effective and robust approach is proposed for the numerical evaluation of the obtained semi-infinite integrals. For a wide range of the excitation frequency, both normal and rotational compliances are depicted in dimensionless plots for different transversely isotropic materials. Based on the obtained results, the effects of anisotropy are highlighted and discussed.  相似文献   

8.
This paper outlines a method of analysis of the steady-state dynamic response of a stratified soil to a horizontal time-harmonic loading applied at a circular area. It is assumed the load to be uniformly distributed over the contact area and embedded at an arbitrary depth. It is shown that by means of application of integral Hankel transform, the problem can be reduced to a form of a single integral, which can be taken numerically. Results of the numerical simulations for an embedded horizontal impulse load are presented to demonstrate the efficiency of the developed procedure.  相似文献   

9.
Lateral dynamic compliance of pile embedded in poroelastic half space   总被引:2,自引:0,他引:2  
The time-harmonic response of a pile in a poroelastic half space and under lateral loadings is studied. By treating the pile as a one-dimensional structure and the half-space as a three-dimensional poroelastic continuum, the dynamic interaction between a pile and a poroelastic medium is formulated as a Fredholm integral equation of the second kind. Green's functions for a distributed lateral force field acting inside a poroelastic half space is an important ingredient of this paper. Numerical results for lateral dynamic compliance functions are presented to illustrate the dynamic characteristics of a pile in a poroelastic half space.  相似文献   

10.
This paper discusses surface displacements, surface strain, rocking, and energy partitioning during reflection-of-plane waves in a fluid-saturated poroelastic half-space. The medium is modeled by Biot's theory, and is assumed to be saturated with inviscid fluid. A linear porosity-modulus relation based on experimental data on sandstones is used to determine the material parameters for Biot's model. Numerical results in terms of angle of incident waves and Poisson's ratio are illustrated for various porosities and degrees of solid frame stiffness. The results show that the amount of solid frame stiffness controls the response of a fluid-saturated porous system. A poroelastic medium with essentially dry-frame stiffness behaves like an elastic medium, and the influence of pore fluid increases as dry-frame stiffness is reduced. The effects of a second P-wave become noticeable in poroelastic media with low dry-frame stiffness.  相似文献   

11.
A study is carefully conducted for the rocking response of a rigid circular foundation resting on a poroelastic half-space when subjected to seismic waves under the framework of Biot’s theory. The free-field waves, rigid-body scattering field waves and radiation scattering field waves are introduced to consider the complex behavior of the soil owing to the scattering phenomena caused by the existence of the foundation. The contact surface between the soil and the foundation is supposed to be perfectly bonded and fully permeable. Combining with the divided wave fields, two sets of dual integral equations elaborating the mixed boundary-value conditions are established, and then reduced to Fredholm integral equations. Therefore, with a semi-analytical method, the expressions of the rocking displacements are obtained. The numerical results of the rocking vibration of the foundation for incident P, SV and Rayleigh waves are presented. The influences of certain parameters, such as the permeability of the soil, the incident angle, Poisson’s ratio and the mass of the foundation, on the rocking vibration of the foundation are explored and studied. Different reactions are found when the foundation is excited by different waves.  相似文献   

12.
Diffraction of plane SV waves by a cavity in poroelastic half-space   总被引:2,自引:0,他引:2  
This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green’s functions of compressive and shear wave sources are derived based on Biot’s theory. The scattered waves are constructed using fi ctitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verifi cation of the accuracy is performed by: (1) checking the satisfaction extent of the boundary c...  相似文献   

13.
An analytical approach is used to investigate dynamic responses of a track system and the poroelastic half-space soil medium subjected to a moving point load under three-dimensional condition. The whole system is divided into two separately formulated substructures, the track sub-system and the ground. The ballast supporting rails and sleepers is placed on the surface of the ground. The rail is modeled by introducing the Green function for an infinitely long Euler beam subjected to the action of the moving point load and the reaction of sleepers represented by a continuous mass. Using the double Fourier transform, the governing equations of motion are then solved analytically in the frequency–wave-number domain. The time domain responses are evaluated by the inverse Fourier transform computation for a certain load velocities. Computed results show that dynamic responses of the soil medium are considerably affected by the fluid phase as well as the load velocity.  相似文献   

14.
An approximate analytical method is presented for the dynamic response of a rigid cylindrical foundation embedded in a poroelastic soil layer under the excitation of a time-harmonic rocking moment. The soil underlying the foundation base is represented by a single-layered poroelastic soil based on rigid bedrock while the soil along the side of the foundation is modeled as an independent poroelastic stratum composed of a series of infinitesimally thin layers. The accuracy of the present solution is verified by comparisons with existing solutions obtained from other researchers. Numerical results for the rocking dynamic impedance and dynamic response factor are presented to demonstrate the influence of nondimensional frequency of excitation, poroelastic soil layer thickness, depth ratio of the foundation and internal friction of the poroelastic soil.  相似文献   

15.
平面P波在饱和半空间中洞室周围的散射(II):数值结果   总被引:1,自引:0,他引:1  
本文通过数值计算研究了入射平面P波在饱和半空间中洞室周围散射问题,分析了入射波频率和角度、边界渗透条件、孔隙率、泊松比等参数对散射的影响。研究表明,平面P波入射情况下,饱和半空间和单相(干土)半空间中洞室附近地表位移幅值的差别很大,干土情况的水平位移幅值相对较大,饱和情况的竖向地表位移幅值相对较大;由于波在洞室附近的干涉,饱和情况与干土情况的地表位移出现相位漂移。随着孔隙率的增大,洞室附近水平地表位移幅值逐渐减小,竖向地表位移幅值则逐渐增大;当孔隙率较低时,边界渗透条件对地表位移幅值的影响很小,而当孔隙率较大时,边界渗透条件的影响则不可忽视,不透水情况下,水平和竖向地表位移幅值的峰值均相对较大;随着入射频率的增加,孔隙率的影响逐渐增大,而且不透水情况下孔隙率的影响相对较大。随着泊松比的增大,洞室附近水平地表位移幅值逐渐降低,竖向地表位移幅值则逐渐增大;泊松比较小时,边界渗透条件对位移幅值的影响较大,泊松比较大时,边界渗透条件对位移幅值的影响则较小;随着入射频率的增加,泊松比的影响逐渐增大。当孔隙率较小时,半空间地表和洞室表面孔隙水压幅值较小,但空间变化比较剧烈,随着孔隙率的增大,孔隙水压逐渐增大但空间变化逐渐平缓;随着入射频率的增加,孔隙水压幅值逐渐增大,且孔隙水压的空间变化逐渐变得复杂。  相似文献   

16.
Based on the analytical layer-element method, an analytical solution is proposed to determine the dynamic interaction between the elastic circular plate and transversely isotropic multilayered half-space. The dynamic response of the elastic circular plate is governed by the classical thin-plate theory with the assumption that the contact surface between the plate and soil is frictionless. The total stiffness matrix of the transversely isotropic multilayered half-space is acquired by assembling the analytical layer-element of each soil layer with the aid of the continuity conditions between adjacent layers. According to the displacement condition of coordination between the plate and soil, the dynamic interaction problem is reduced to that of multilayered transversely isotropic half-space subjected to axisymmetric harmonic vertical loading. Some numerical examples are given to study the vertical vibration of the plate, and the results indicate that the dynamic response of elastic circular plate depends strongly on the material properties of the soils, the rigidity of the plate, the frequency of excitation and the external load form.  相似文献   

17.
平面P波在饱和半空间中洞室周围的散射(I):解析解   总被引:1,自引:0,他引:1  
利用波函数展开法给出了入射平面P波在饱和半空间中圆形洞室周围散射问题的一个解析解。半空间假定为无粘性流体饱和介质,满足Biot理论。采用一种基于实验数据的孔隙率和模量之间的线性关系来确定Biot模型中的介质参数。解答考虑了透水边界和非透水边界两种情况。对边界条件进行了数值检验,结果表明,随着级数截断项数的增大,边界残量衰减很快。解答为进一步研究入射波频率和角度、边界渗透条件、孔隙率、泊松比等参数对散射的影响奠定了基础。  相似文献   

18.
This work deals with the evaluation of the dynamic pressures and the associated forces on a pair of rigid vertical cantilever walls retaining a uniform, fully saturated poroelastic layer of soil. Hysteretic damping in the soil skeleton may also be present. Wall pressures and forces are induced by horizontal ground shaking harmonically varying with time and spatially invariant. The problem is solved analytically under conditions of plane strain. The governing partial differential equations of motion, after separation of variables and the simplifying assumptions of zero vertical normal stresses and zero horizontal variation of vertical displacements, reduce to a system of two ordinary differential equations for the amplitudes of the solid skeleton horizontal displacement and the pore water pressure, which are easily solved. The parameters examined include the ratio of the distance between walls to the height of the retained soil material and the soil material properties such as porosity, permeability and damping. The comprehensive numerical data presented indicate that the displacements, wall pressures and resultant forces are highly dependent on the distance between the walls for any values of porosity and permeability.  相似文献   

19.
The indirect boundary element method is used to study the 3D dynamic response of an infinitely long alluvial valley embedded in a saturated layered half-space for obli- quely incident SV waves. A wave-number transform is first applied along the valley's axis to reduce a 3D problem to a 2D plane strain problem. The problem is then solved in the section perpendicular to the axis of the valley. Finally, the 3D dynamic responses of the valley are obtained by an inverse wave-number transform. The validity of the method is con- firmed by comparison with relevant results. The differences between the responses around the valley embedded in dry and in saturated poroelastic medium are studied, and the effects of drainage conditions, porosity, soil layer stiffness, and soil layer thickness on the dynamic response are dis- cussed in detail resulting in some conclusions.  相似文献   

20.
The indirect boundary element method is used to study the 3D dynamic response of an infinitely long alluvial valley embedded in a saturated layered half-space for obliquely incident SV waves. A wave-number transform is first applied along the valley’s axis to reduce a 3D problem to a 2D plane strain problem. The problem is then solved in the section perpendicular to the axis of the valley. Finally, the 3D dynamic responses of the valley are obtained by an inverse wave-number transform. The validity of the method is confirmed by comparison with relevant results. The differences between the responses around the valley embedded in dry and in saturated poroelastic medium are studied, and the effects of drainage conditions, porosity, soil layer stiffness, and soil layer thickness on the dynamic response are discussed in detail resulting in some conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号