首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The extent of the last British–Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23–19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice‐free. An alternative model implies that these three areas were ice‐covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The behaviour of ice sheets as they retreated from their Last Glacial Maximum (LGM) positions provides insights into Lateglacial and early Holocene ice‐sheet dynamics and climate change. The pattern of deglaciation of the Laurentide Ice Sheet (LIS) in arctic fiord landscapes can now be well dated using cosmogenic exposure dating. We use cosmogenic exposure and radiocarbon ages to constrain the deglaciation history of Clyde Inlet, a 120 km long fiord on northeastern Baffin Island. The LIS reached the continental shelf during the LGM, retreated from the coastal lowlands by 12.5 ± 0.7 ka (n = 3), and from the fiord mouth by 11.7 ± 2.2 ka (n = 4). Rapid retreat from the outer fiord occurred 10.3 ± 1.3 ka (n = 6), with the terminus reaching the inner fiord shortly after 9.4 ka (n = 2), where several moraine systems were deposited between ca. 9.4 and ca. 8.4 ka. These moraines represent fluctuations of the LIS during the warmest summers since the last interglaciation, and this suggests that the ice sheet was responding to increased snowfall. Before retreating from the head of Clyde Inlet, the LIS margin fluctuated at least twice between ca. 7.9 and ca. 8.5 ka, possibly in response to the 8.2 ka cold event. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Relict rock glaciers have considerable potential for contributing to palaeoclimatic reconstruction, but this potential is often undermined by lack of dating control and problems of interpretation. Here we reinvestigate and date four proposed ‘rock glaciers’ in the Cairngorm Mountains and show that the morphology of only one of these appears consistent with that of a true rock glacier produced by creep of underlying ice or ice‐rich sediment. All four features comprise rockslide or rock avalanche runout debris, and the possibility that all four represent unmodified runout accumulations cannot be discounted. Surface exposure dating of the four debris accumulations using cosmogenic 10Be produced uncertainty‐weighted mean ages of 15.4 ± 0.8 ka, 16.2 ± 1.0 ka, 12.1 ± 0.6 ka and 12.7 ± 0.8 ka. All four ages imply emplacement under cold stadial conditions, two prior to the Windermere Interstade of ca. 14.5–12.9 cal. ka BP and two during the Loch Lomond Stade of ca. 12.9–11.5 cal. ka BP. The above ages indicate that paraglacial rock‐slope failure on granite rockwalls occurred within a few millennia after deglaciation. The mean exposure ages obtained for runout debris at two sites – Strath Nethy (16.2 ± 1.0 ka) and Lairig Ghru (15.4 ± 0.8 ka) – are consistent with basal radiocarbon ages from Loch Etteridge, 22 km to the southwest (mean = 15.6 ± 0.3 cal. ka BP) and imply widespread deglaciation of the Cairngorms and adjacent valleys before 15 ka and possibly 16 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Recent research based primarily on exposure ages of boulders on moraines has suggested that extensive ice masses persisted in fjords and across low ground in north‐west Scotland throughout the Lateglacial Interstade (≈ Greenland Interstade 1, ca. 14.7–12.9 ka), and that glacier ice was much more extensive in this area during the Older Dryas chronozone (ca. 14.0 ka) than during the Younger Dryas Stade (ca. 12.9–11.7 ka). We have recalibrated the same exposure age data using locally derived 10Be production rates. This increases the original mean ages by 6.5–12%, implying moraine deposition between ca. 14.3 and ca. 15.1 ka, and we infer a most probable age of ca. 14.7 ka based on palaeoclimatic considerations. The internal consistency of the ages implies that the dated moraines represent a single readvance of the ice margin (the Wester Ross Readvance). Pollen–stratigraphic evidence from a Lateglacial site at Loch Droma on the present drainage divide demonstrates deglaciation before ca. 14.0 ka, and therefore implies extensive deglaciation of all low ground and fjords in this area during the first half of the interstade (ca. 14.7–14.0 ka). This inference appears consistent with Lateglacial radiocarbon dates for shells recovered from glacimarine sediments and a dated tephra layer. Our revised chronology conflicts with earlier proposals that substantial dynamic ice caps persisted in Scotland between 14 and 13 ka, that large active glaciers probably survived throughout the Lateglacial Interstade and that ice extent was greater during the Older Dryas period than during the Younger Dryas Stade. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In this study we have obtained 17 cosmogenic exposure ages from three well‐developed moraine systems – Halland Coastal Moraines (HCM), Göteborg Moraine (GM) and Levene Moraine (LM) – which were formed during the last deglaciation in southwest Sweden by the Scandinavian Ice Sheet (SIS). The inferred ages of the inner HCM, GM and LM are 16.7 ± 1.6, 16.1 ± 1.4 and 13.6 ± 1.4 ka, respectively, which is slightly older than previous estimates of the deglaciation based on the minimum limiting radiocarbon ages and pollen stratigraphy. During this short interval from 16.7 ± 1.6 to 13.6 ± 1.4 ka a large part (100–125 km) of the marine‐based sector of the SIS in southwest Sweden was deglaciated, giving an average ice margin retreat between 20 to 50 m a?1. The inception of the deglaciation pre‐dated the Bølling/Allerød warming, the rapid sea level rise at 14.6 cal. ka BP and the first inflow of warm Atlantic waters into Skagerrak. We suggest that ice retreat in southwest Sweden is mainly a dynamical response governed by the disintegration of the Norwegian Channel Ice Stream and not primarily driven by climatic changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The Alps play a pivotal role for glacier and climate reconstructions within Europe. Detailed glacial chronologies provide important insights into mechanisms of glaciation and climate change. We present 26 10Be exposure dates of glacially transported boulders situated on moraines and ice‐moulded bedrock samples at the Belalp cirque and the Great Aletsch valley, Switzerland. Weighted mean ages of ~10.9, 11.1, 11.0 and 9.6 ka for the Belalp, on up to six individual moraine ridges, constrain these moraines to the Egesen, Kartell and Schams stadials during Lateglacial to early Holocene times. The weighted mean age of ~12.5 ka for the right‐lateral moraine of the Great Aletsch correlates with the Egesen stadial related to the Younger Dryas cooling. These data indicate that during the early Holocene between ~11.7 and ~9.2 ka, glaciers in the Swiss Alps seem to have been significantly affected by cold climatic conditions initiated during the Younger Dryas and the Preboreal Oscillation. These conditions resulted in glacier margin oscillations relating to climatic fluctuations during the second phase of the Younger Dryas – and continuing into Boreal times – as supported by correlation of the innermost moraine of the Belalp Cirque to the Schams (early) Holocene stage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We present a chronology of late Pleistocene deglaciation and Neoglaciation for two valleys in the north‐central Brooks Range, Alaska, using cosmogenic 10Be exposure dating. The two valleys show evidence of ice retreat from the northern range front before ~16–15 ka, and into individual cirques by ~14 ka. There is no evidence for a standstill or re‐advance during the Lateglacial period, indicating that a glacier advance during the Younger Dryas, if any, was less extensive than during the Neoglaciation. The maximum glacier expansion during the Neoglacial is delimited by moraines in two cirques separated by about 200 km and dated to 4.6 ± 0.5 and 2.7 ± 0.2 cal ka BP. Both moraine ages agree with previously published lichen‐inferred ages, and confirm that glaciers in the Brooks Range experienced multiple advances of similar magnitude throughout the late Holocene. The similar extent of glaciers during the middle Holocene and the Little Ice Age may imply that the effect of decreasing summer insolation was surpassed by increasing aridity to limit glacier growth as Neoglaciation progressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The now acknowledged thinning of the Greenland Ice Sheet raises concerns about its potential contribution to future sea level rise. In order to appreciate the full extent of its contribution to sea level rise, reconstruction of the ice sheet's most recent last deglaciation could provide key information on the timing and the height of the ice sheet at a time of rapid climate readjustment. We measured 10Be concentrations in 12 samples collected along longitudinal and altitudinal transects from Sisimiut to within 10 km of the Isunguata Sermia Glacier ice margin on the western coast of Greenland. Along the longitudinal transect, we collected three perched boulders and two bedrocks. In addition, we sampled seven perched boulders along a vertical transect in a valley within 10 km of the Isunguata Sermia Glacier ice margin. Our pilot dataset constrains the height of the ice sheet during the Last Glacial Maximum (LGM) between 500 m and 840 m (including the 120 m relative sea level depression at the time of the LGM, 21 ka BP). From the transect we estimate the thinning of the ice sheet at the end of the deglaciation between 12.3 ± 1.5 10Be ka (n = 2) and 8.3 ± 1.2 10Be ka (n = 3) to be ~6 cm a?1 over this time period. Direct dating of the retreat of the western margin of the Greenland Ice Sheet has the potential to better constrain the retreat rate of the ice margin, the thickness of the former ice sheet as well as its response to climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
末次冰盛期(Last Glacial Maximum, LGM)结束后,全球经历末次冰消期进入全新世,这代表了过去十万年以来最为显著的气候转型事件。末次冰消期的开始在全球范围内近乎同步,但其背后的气候驱动机制仍不明确。中低纬度,如青藏高原及其周边地区的山地冰川对气候变化响应敏感,准确限定LGM结束前后冰川地貌的时代可为上述问题的解决提供可靠的古冰川信息。然而,目前青藏高原仍缺乏足够有针对性的研究。本文选取位于青藏高原东南部的岗日嘎布作为研究区,对该区格泥峰东侧的玉东曲谷口分布的冰碛垄序列进行了详细的地貌调查和宇宙成因核素10Be暴露测年研究。采自玉东曲谷口附近6道冰碛垄中地貌相对年代较老的4道冰碛垄的14个冰川漂砾10Be暴露年龄介于(13.3±1.0)~(19.3±1.4) ka。利用累积概率密度和简化卡方等统计分析方法排除异常值后,将这4道冰碛垄中地貌相对年代较年轻两道的形成时代限定为(17.0±0.5) ka和(18.4±1.0) ka,分别对应末次冰消期和LGM后期。与气候记录进行对比后,我们认为这两次冰川波动响应可能受控于印度洋-太平洋暖池海表温度的夏季气温变化。  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号