首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a highly simplified model of the dynamical structure of a disc galaxy where only two parameters fully determine the solution, mass and angular momentum. We show through simple physical scalings that once the mass has been fixed, the angular momentum parameter λ is expected to regulate such critical galactic disc properties as colour, thickness of the disc and bulge-to-disc ratio. It is, hence, expected to be the determinant physical ingredient resulting in a given Hubble type. A simple analytic estimate of λ for an observed system is provided. An explicit comparison of the distribution of several galactic parameters against both Hubble type and λ is performed using observed galaxies. Both such distributions exhibit highly similar characteristics for all galactic properties studied, suggesting λ as a physically motivated classification parameter for disc galaxies.  相似文献   

2.
Supernova rates (hypernova, type II, type Ib/c and type Ia) in a particular galaxy depend on the metallicity (i.e. on the galaxy age), on the physics of star formation and on the binary population. In order to study the time evolution of the galactic supernova rates, we use our chemical evolutionary model that accounts in detail for the evolution of single stars and binaries. In particular, supernovae of type Ia are considered to arise from exploding white dwarfs in interacting binaries and we adopt the two most plausible physical models: the single degenerate model and the double degenerate model. Comparison between theoretical prediction and observations of supernova rates in different types of galaxies allows to put constraints on the population of intermediate mass and massive close binaries.

The temporal evolution of the absolute galactic rates of different types of supernovae (including the type Ia rate) is presented in such a way that the results can be directly implemented into a galactic chemical evolutionary model. Particularly for type Ia’s the inclusion of binary evolution leads to results considerably different from those in earlier population synthesis approaches, in which binary evolution was not included in detail.  相似文献   


3.
An indicator of galactic violence is proposed, nominally equal to the total galactic mass divided by the rim radius. Four models of galaxy formation are outlined; and for each, the dependence of the rim radius on the galactic mass and the source of angular momentum is examined. If the violence indicator is small, then a normal galaxy results. If the violence indicator is large, then a galaxy with a very massive central black hole is produced (possibly a quasar). A rim radius of zero would indicate the ultimate violence and would lead directly to a non-rotating black hole of galactic mass.Los Alamos National Laboratory is operated by the University of California for the U.S. Dept. of Energy under Contract W-7405-ENG-36.  相似文献   

4.
414 galactic PN with measured infra-red luminosities (302 of which are located within the sector of galactic longitudes from 345° to 15°) are investigated. All nebulae are subdivided into four mass classes and different distance scales for each class are used. Planetary nebulae located in the inner Galaxy are selected. The galactic radial gradients of infra-red luminosities and excesses are obtained for each nebula mass class. Possible explanations of the effect are discussed.  相似文献   

5.
The dynamics of galactic systems with central binary black holes is studied. The model is a modification from the restricted three body problem, in which a galactic potential is added as an external potential. Considering the case with an equal mass binary black holes, the conditions of existence of equilibrium points, including Lagrange Points and additional new equilibrium points, i.e. Jiang-Yeh Points, are investigated. A critical mass is discovered to be fundamentally important. That is, Jiang-Yeh Points exist if and only if the galactic mass is larger than the critical mass. The stability analysis is performed for all equilibrium points. The results that Jiang-Yeh Points are unstable could lead to the core formation in the centers of galaxies.  相似文献   

6.
The gravitational separation of iron atoms with respect to hydrogen is evaluated by simple models of globular clusters and spherical galaxies before star formation, as well as in a column of gas perpendicular to the galactic plane in the solar neighborhood. The changes of the iron abundance are small, but qualitatively consistent with the observed facts: (1) there is a positive correlation between the mass number of the element and the steepness of its abundance gradient; (2) there is a connection between the mass and the density concentration of the globular clusters and their chemical composition; (3) the changes of the chemical content in the galactic plane are very small during the life of the galactic disk, but are increasingly significant in the upper layers.  相似文献   

7.
The migration of central black holes in galactic nuclei through their encounters with galactic globular clusters is studied. The black hole moves in the field of the galactic bulge with a fixed potential. The dependences of the black-hole drift amplitude on orbital parameters of the globular cluster, its mass, and bulge parameters have been found. The drift amplitude of the central black hole can reach several parsecs in our Galaxy and several tens of parsecs in early-type (Sa) and late-type (Sc) spiral galaxies.  相似文献   

8.
Intense observations of the galactic center since 1992 have revealed the presence of a supermassive object located there, some 26 000 light years from Earth. The mass of the galactic center was determined using time resolved astrometry over a time span of 13 years, from 1992 to present. The observations clearly show that the stars in the immediate vicinity of the supermassive galactic center, denoted as Sagittarius A* (Sgr A*), move along purely Keplerian orbits around Str A*. Observation of the rapidly moving stars permitted astrophysicists to determine a mass for the galactic center of around 3.6 million solar masses. Time resolved images of the Keplerian motions of these stars has exhibited to date no evidence of distortions in the images due to gravitational light bending effects, as predicted by General Relativity. In this paper, a well known tool commonly used by astrophysicists for estimating the effect of gravitation on light rays was examined. The results reveal flaws in the understanding of fundamental principles in mathematical physics applied to gravitational effects on rays of light, as predicted by General Relativity, at the site of a point‐like gravitating masses such as the galactic center mass. Application of the Gauss Law to point‐like gravitating masses shows that a requirement for the colinear alignment of the light source, the lensing and the observer is not necessary for an observation of gravitational lensing as predicted by General Relativity. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The migration of central compact massive objects (CMO) in galactic nuclei caused by encounters with spherical clusters is studied. A CMO moves in the field of the fixed potential of a galactic bulge. An empirical relationship between the masses of a CMO and of a bulge (Mbh = 0.001 Mb) is used here. The dependence of the amplitude of the CMO drift on the mass and size of a bulge, as well as on the initial velocity and mass of a spherical cluster, is found. It is shown that, on the average, the drift amplitude increases as the size of a bulge increases (with its mass fixed) and decreases with increasing bulge mass (with its size fixed). The amplitude of the drift increases on the average with increasing cluster mass and decreasing cluster velocity.  相似文献   

10.
We use a cosmological galactic evolutionary approach to model the Milky Way. A detailed treatment of the mass aggregation and dynamical history of the growing dark halo is included, together with a self-consistent physical treatment for the star formation processes within the growing galactic disc. This allows us to calculate the temporal evolution of star and gas surface densities at all galactic radii, in particular, the star formation history (SFH) at the solar radius. A large range of cosmological mass aggregation histories (MAHs) is capable of producing a galaxy with the present-day properties of the Milky Way. The resulting SFHs for the solar neighbourhood bracket the available observational data for this feature, the most probable MAH yielding the optimal comparison with these observations. We also find that the rotation curve for our Galaxy implies the presence of a constant density core in its dark-matter halo.  相似文献   

11.
Dependencies of galactic planetary nebula chemical abundances and their central star masses on the distance from the galactic plane are discussed.Z-dependencies of He/H, N/H, N/O and Ar/H and dependencies of He/H, N/H, N/O, Ne/H and Ar/H on central star mass are found. Three galactic planetary nebula distance scale samples are used and it is shown that the distance scale system (where distances of each planetary nebula mass class are determined with the separate scale) is the most reliable. The correlations obtained for the Magellanic Cloud planetary nebulae are used for comparison.  相似文献   

12.
Older and more recent pieces of observational evidence suggest a strong connection between QSOs and galaxies; in particular, the recently discovered correlation between black hole and galactic bulge masses suggests that QSO activity is directly connected to the formation of galactic bulges. The cosmological problem of QSO formation is analysed in the framework of an analytical model for galaxy formation; for the first time a joint comparison with galaxy and QSO observables is performed. In this model it is assumed that the same physical variable that determines galaxy morphology is able to modulate the mass of the black hole responsible for QSO activity. Both halo spin and the occurrence of a major merger are considered as candidates for this role. The predictions of the model are compared with available data for the type-dependent galaxy mass functions, the star formation history of elliptical galaxies, the QSO luminosity function and its evolution (including the obscured objects contributing to the hard-X-ray background), the mass function of dormant black holes and the distribution of black hole-to-bulge mass ratios. A good agreement with observations is obtained if the halo spin modulates the efficiency of black hole formation, and if the galactic haloes at z =0 have shone in an inverted order with respect to the hierarchical one (i.e., stars and black holes in bigger galactic haloes have formed before those in smaller ones). This inversion of hierarchical order for galaxy formation, which reconciles galaxy formation with QSO evolution, is consistent with many pieces of observational evidence.  相似文献   

13.
The overabundance of Mg relative to Fe, observed in the nuclei of bright ellipticals, and its increase with galactic mass, poses a serious problem for all current models of galaxy formation. Here, we improve on the one-zone chemical evolution models for elliptical galaxies by taking into account positive feedback produced in the early stages of supermassive central black hole growth. We can account for both the observed correlation and the scatter if the observed anti-hierarchical behaviour of the AGN population couples to galaxy assembly and results in an enhancement of the star formation efficiency which is proportional to galactic mass. At low and intermediate galactic masses, however, a slower mode for star formation suffices to account for the observational properties.  相似文献   

14.
The galactic accelerationK(z) calculated by Perry (1969) is explained by the influence of a local galactic mass concentration.

Mitteilungen Serie A, Nr. 46.  相似文献   

15.
From the observed age distribution of galactic clusters within 1 kpc we deduce that the typical total lifetime of a galactic cluster is about 2×108 yr. The individual lifetimes vary between 108 and 1010 yr. The observed lifetimes are compared with the evaporation times which are found from numerical experiments with star cluster models. These models contain up to 250 stars with a realistic mass spectrum. The effect of the galactic tidal field is taken into account and enhances the rate of escape significantly. Escapers are identified by using the Jacobian integral. We give the evaporation time in years as a function of the median radius for different values of the total mass of a cluster. The agreement between the resulting theoretical lifetimes and the observed values is sufficiently good. We estimate that the tidal field of passing interstellar clouds should be in most cases less efficient in dissolving a galactic cluster than the internal evaporation process combined with the effect of the general galactic field.  相似文献   

16.
A method to fit flat rotation curves is presented, wherein the galactic density for a disk model is expressed in terms of a Dirichlet polynomial. This procedure allows us to obtain the total galactic mass and to predict the circular velocity at large galactocentric distances.Application of the method to the Galaxy, M31 and four Sc galaxies shows that a significant galactic mass is located beyond the optical radius although it is considerably smaller than the integral mass values obtained from current models with a massive corona included. Observed rotation curves and convergent total mass are obtained, thus the total mass for the Milky Way Galaxy is 5.69×1011 M .  相似文献   

17.
We report the result of our near-infrared observations ( JHK s) for type II Cepheids (including possible RV Tau stars) in galactic globular clusters. We detected variations of 46 variables in 26 clusters (10 new discoveries in seven clusters) and present their light curves. Their periods range from 1.2 d to over 80 d. They show a well-defined period–luminosity relation at each wavelength. Two type II Cepheids in NGC 6441 also obey the relation if we assume the horizontal branch stars in NGC 6441 are as bright as those in metal-poor globular clusters in spite of the high metallicity of the cluster. This result supports the high luminosity which has been suggested for the RR Lyr variables in this cluster. The period–luminosity relation can be reproduced using the pulsation equation     assuming that all the stars have the same mass. Cluster RR Lyr variables were found to lie on an extrapolation of the period–luminosity relation. These results provide important constraints on the parameters of the variable stars.
Using Two Micron All-Sky Survey (2MASS) data, we show that the type II Cepheids in the Large Magellanic Cloud (LMC) fit our period–luminosity relation within the expected scatter at the shorter periods. However, at long periods (   P > 40  d, i.e. in the RV Tau star range) the LMC field variables are brighter by about one magnitude than those of similar periods in galactic globular clusters. The long-period cluster stars also differ from both these LMC stars and galactic field RV Tau stars in a colour–colour diagram. The reasons for these differences are discussed.  相似文献   

18.
We describe the dynamical evolution of hotspots velocity, pressure and mass density in radio-loud active galactic nuclei (AGNs), taking proper account of (1) the conservations of the mass, momentum and kinetic energy flux of the unshocked jet, (2) the deceleration process of the jet by shocks and (3) the cocoon expansion without assuming the constant aspect ratio of the cocoon. By the detailed comparison with two-dimensional relativistic hydrodynamic simulations, we show that our model well reproduces the whole evolution of relativistic jets. Our model can explain also the observational trends of the velocity, the pressure, the size and mass density of hotspots in compact symmetric objects (CSOs) and Fanaroff–Riley type II (FR II) radio galaxies.  相似文献   

19.
20.
The propagation of radioactive nuclei of cosmic rays in a flat diffusion galactic model (sources and the main gaseous mass are concentrated in the galactic disc) is considered. The corresponding results are not reducible to the results of a simple homogeneous model. It is shown that the recent data on the Be10 nuclei abundance in cosmic rays do not contradict the occurrence of a large cosmic ray halo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号