首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that the responses of boreal Norway spruce (Picea abies) forests to climate change would be region-specific due to regional differences in temperature and water availability. In this context, we analyzed the adaptive effects of varied thinning intensities on the gross primary production (GPP), total stem wood growth, and timber yield over a 100-year period using a process-based ecosystem model. Our simulations represented Norway spruce forests for five different bioclimatic zones spanning southern to northern Finland (61–67oN). Ten thinning regimes with thinning intensities ranging from 5 to 50 %, as well as an unthinned regime, were included in the calculations. The results showed that at the southern sites without thinning, the cumulative GPP and total stem wood growth were lower under the changing climate than in the current climate over the simulation period due to greater water depletion via evapotranspiration and reduced soil water availability. At the central and the northern sites, the climate changes increasingly enhanced the GPP and total stem wood growth due to the mitigation of low-temperature limitation and the improved soil water availability. Thinning generally mitigated the soil water deficit by reducing water evaporation and led to a reduction of the natural mortality. At the southern sites, light and moderate thinning intensities increased the GPP and total stem wood growth relative to sites with a changing climate that experienced no thinning. Moreover, moderate thinning resulted in the greatest timber yield. Heavy thinning, in which a large proportion of standing trees were removed, reduced the GPP and total stem wood growth despite allowing increased soil water availability. At the northern sites, all levels of thinning, including light thinning, decreased the GPP and stem wood growth, indicating that soil water availability was not a limiting factor for growth prior to thinning.  相似文献   

2.
This work studied the temporal and spatial variability of the risk of snow-induced forest damage in Finland under current and changing climatic conditions until the end of this century. The study was based on a snow accumulation model in which cumulative precipitation, air temperature and wind speed were used as input variables. The risk was analyzed in terms of the number of days per year when the accumulated amount of snow exceeded 20 kg m???2. Based on the risk, the forest area and mean carbon stock of seedling, young thinning and advanced thinning stands at risk were calculated. Furthermore, the number of 5-day periods, when the accumulated amount of snow exceeded a risk limit, was calculated for the current and changing climatic conditions in order to study the frequency of damaging snowfalls. Compared to the baseline period 1961–1990, the risk of snow-induced forest damage and the amount of damaging snowfalls were predicted to decrease from the first 30-year period (1991–2020) onwards. Over the whole country, the mean annual number of risk days decreased by 11%, 23% and 56% in the first, second and third 30-year period, respectively, compared to the baseline period. In the most hazardous areas in north-western and north-eastern Finland, the number of risk days decreased from the baseline period of over 30 days to about 8 days per year at the end of the century. Correspondingly, the shares of the forest area at risk were 1.9%, 2.0% and 1.0% in the first, second and third 30-year period, respectively. The highest mean annual carbon stocks of young stands at risk were found in central, north-eastern and north-western Finland in the first and second 30-year period, varying between 0.6 and 1.2 Mg C ha???1 year???1, meaning at highest 3% of the mean carbon stock (Mg C stem wood ha???1) of those areas. This study showed that although the risk of snow-induced forest damage was mainly affected by changes in critical weather events, the development of growing stock under the changing climatic conditions also had an effect on the risk assessment. However, timely management of forest stands in the areas with a high risk of snow-induced damage contributes to the trees’ increased resistance to the damage.  相似文献   

3.
4.
《Climate Policy》2001,1(2):155-171
Although, it has received relatively little attention as a potential method of combating climate change in comparison to energy reduction measures and development of carbon-free energy technologies, sequestration of carbon dioxide in geologic or biospheric sinks has enormous potential. This paper reviews the potential for sequestration using geological and ocean storage as a means of reducing carbon dioxide emissions.Considerable quantities of carbon dioxide separated from natural gas deposits and from hydrogen production from steam reforming of methane are already used in enhanced oil recovery and in extraction of coalbed methane, the carbon dioxide remaining sequestered at the end of the process. A number of barriers lie in the way of its implementation on a large scale. There are concerns about possible environmental effects of large-scale injection of carbon dioxide especially into the oceans. Available technologies, especially of separating and capturing the carbon dioxide from waste stream, have high costs at present, perhaps representing an additional 40–100% onto the costs of generating electricity. In most of the world there are no mechanisms to encourage firms to consider sequestration.Considerable R&D is required to bring down the costs of the process, to elucidate the environmental effects of storage and to ensure that carbon dioxide will not escape from stores in unacceptably short timescales. However, the potential of sequestration should not be underestimated as a contribution to global climate change mitigation measures.  相似文献   

5.
The wheatbelt of Western Australia shows a distinct Mediterranean climate with most of the rainfall occurring in the winter months. The main factor limiting plant production in this region is rainfall. Due to clearing of native vegetation, dryland salinity is a major problem in south-west Australia. Since the mid 1970s the region has experienced a significant decrease in winter rainfall. Across nine sites, growing season rainfall (May to October) decreased by an average of 11% and the sum of rainfall in June and July (June + July) decreased by 20%. We used the ASPIM-Nwheat model in combination with historic climate data to study the impact of recent climate change on the hydrology and production of wheat based farming systems by comparing results for before and after 1975. Despite the large decline in rainfall, simulated yields based on the actual weather data did not fall. At the same time, simulated drainage decreased by up to 95% which will significantly reduce the spread of dryland salinity. These results were due to the rainfall changes mainly occurring in June and July, a period when rainfall often exceeds crop demand and large amounts of water are usually lost by deep drainage. The findings will have significant implications for estimates of future climate change impacts in this region with changes in rainfall causing non-proportional impacts on production and hydrological aspects, such as deep drainage and waterlogging, where proportionality is often presumed.  相似文献   

6.
A temperate and boreal deforestation experiment has been performed at Météo-France using the ARPEGE climate model. A first simulation was performed as a control with a present-day vegetation map, and another one with all forests north of 45 °N replaced by meadows. Prescribed monthly mean climatological SSTs were used in both integrations. The ARPEGE climate model includes a physically based land surface scheme, which has been tested both on snowfree and snow-covered sites, and has a relatively high horizontal resolution. Results of the 4-year integrations suggest that forests exert a strong influence on the surface climate of the temperate and boreal regions. Deforestation induces a significant cooling which modifies the atmospheric circulation simulated in the high latitudes, and also in the tropics. The most important impact is observed during the melting season which is delayed by the forest removal. This result is consistent with preliminary stand-alone experiments showing that the atmospheric boundary layer can be heated by the forest, even if the ground is covered by snow. The study confirms that vegetation feedbacks should be included when performing future climate studies such as doubled CO2 experiments, eventhough many uncertainties still remain with regard to other physical aspects of the climate models. Received: 5 September 1995 / Accepted: 12 August 1996  相似文献   

7.
The projected response of coniferous forests to a climatic change scenario of doubled atmospheric CO2, air temperature of +4 °C, and +10% precipitation was studied using a computer simulation model of forest ecosystem processes. A topographically complex forested region of Montana was simulated to study regional climate change induced forest responses. In general, increases of 10–20% in LAI, and 20–30% in evapotranspiration (ET) and photosynthesis (PSN) were projected. Snowpack duration decreased by 19–69 days depending on location, and growing season length increased proportionally. However, hydrologic outflow, primarily fed by snowmelt in this region, was projected to decrease by as much as 30%, which could virtually dry up rivers and irrigation water in the future.To understand the simulated forest responses, and explore the extent to which these results might apply continentally, seasonal hydrologic partitioning between outflow and ET, PSN, respiration, and net primary production (NPP) were simulated for two contrasting climates of Jacksonville, Florida (hot, wet) and Missoula, Montana (cold, dry). Three forest responses were studied sequentially from; climate change alone, addition of CO2 induced tree physiological responses of-30% stomatal conductance and +30% photosynthetic rates, and finally with a reequilibration of forest leaf area index (LAI), derived by a hydrologic equilibrium theory. NPP was projected to increase 88%, and ET 10%, in Missoula, MT, yet dcrease 5% and 16% respectively for Jacksonville, FL, emphasizing the contrasting forest responses possible with future climatic change.  相似文献   

8.
A physiological growth and yield model was applied for assessing the effects of forest management and climate change on the carbon (C) stocks in a forest management unit located in Finland. The aim was to outline an appropriate management strategy with regard to C stock in the ecosystem (C in trees and C in soil) and C in harvested timber. Simulations covered 100 years using three climate scenarios (current climate, ECHAM4 and HadCM2), five thinning regimes (based on current forest management recommendations for Finland) and one unthinned. Simulations were undertaken with ground true stand inventory data (1451 hectares) representing Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and silver birch (Betula pendula) stands. Regardless of the climate scenario, it was found that shifting from current practices to thinning regimes that allowed higher stocking of trees resulted in an increase of up to 11% in C in the forest ecosystem. It also increased the C in the timber yield by up to 14%. Compared to current climatic conditions, the mean increase over the thinning regimes in the total C stock in the forest ecosystem due to the climate change was a maximum of 1%; but the mean increase in total C in timber yield over thinning regimes was a maximum of 12%.  相似文献   

9.
近25 a气候变化对江苏省粮食产量的影响   总被引:4,自引:1,他引:4       下载免费PDF全文
利用1986-2010年江苏省63个气象站的常规气象数据和粮食单产统计资料,分析了苏北、苏中、苏南地区和江苏全省三种时间尺度的气候变化特征;基于自助抽样(bootstrap)和一元线性回归的方法,研究了各区和全省粮食产量对作物年(11月一次年10月)、夏粮—秋粮生长季(11月-次年5月和6-10月)和月尺度气候要素的响应;并定量评价了过去25 a气候变化对各区和全省粮食产量的影响以及各气候要素的贡献.结果表明:1)在作物年、夏粮—秋粮生长季以及月尺度上,三区和全省各气候要素均发生了不同程度的变化,且存在一定的时空差异.在不断发展的农业管理措施和技术以及气候的共同作用下,三区和全省粮食单产显著(p>0.01)增加,其中,全省增加趋势为66.89 kg·hm-2·a-1.2)除苏南地区对作物年尺度上的气候变化响应不显著外,粮食产量对降水的不随时间变化的负响应关系(即随降水的增加而减小,减小而增加)均在不同时间尺度和地区得到了体现,说明降水对这些地区粮食生产的影响十分重要;其中,苏北、苏中和全省粮食产量随作物年降水的增加(减少)而减小(增加),平均速率分别为0.19%·(10 mm)-1、0.09%·(10 mm)-1和0.11%·(10 mm)-1.3)三类模型结果均显示气候变化使得苏北、苏南和江苏粮食产量减小,但结果略有差异,其中,利用月气候要素建立的模型C的结果显示气候变化对粮食单产(总产)的影响最大,其均值分别为-6.51%·(10 a)-1(-11.28×108kg· (10 a)-1)、-3.27%·(10 a)-1(-2.36×108 kg·(10 a)-1)和-1.34%·(10 a)-1(-4.45×108kg·(10 a)-1).另外,为了系统而全面地评估气候变化对粮食产量的影响,考虑月尺度的气候变化的影响是十分必要的.  相似文献   

10.
An 11-year remotely sensed surface albedo dataset coupled with historical meteorological and stand-level forest management data for a variety of stands in Norway’s most productive logging region is used to develop regression models describing temporal changes in forest albedo following clear-cut harvest disturbance events. Datasets are grouped by dominant tree species, and two alternate multiple regression models are developed and tested following a potential-modifier approach. This result in models with statistically significant parameters (p?<?0.05) that explain a large proportion of the observed variation, requiring a single canopy modifier predictor coupled with either monthly or annual mean air temperature as a predictor of a stand’s potential albedo. Models based on annual mean temperature predict annual albedo with errors (RMSE) in the range of 0.025–0.027, while models based on monthly mean temperature predict monthly albedo with errors ranging between of 0.057–0.065 depending on the dominant tree species. While both models have the potential to be transferable to other boreal regions with similar forest management regimes, further validation efforts are required. As active management of boreal forests is increasingly seen as a means to mitigate climate change, the presented models can be used with routine forest inventory and meteorological data to predict albedo evolution in managed forests throughout the region, which, together with carbon cycle modeling, can lead to more holistic climate impact assessments of alternative forest harvest scenarios and forest product systems.  相似文献   

11.
12.
Fulu Tao  Zhao Zhang 《Climatic change》2011,105(3-4):409-432
Projections of future climate change are plagued with uncertainties from global climate models and emission scenarios, causing difficulties for impact assessments and for planners taking decisions on adaptation measure. Here, we developed an approach to deal with the uncertainties and to project the changes of maize productivity and water use in China using a process-based crop model, against a global mean temperature (GMT) increase scale relative to 1961?C1990 values. From 20 climate scenarios output from the Intergovernmental Panel on Climate Change Data Distribution Centre, we adopted the median values of projected changes in monthly mean climate variables for representative stations and driven the CERES-Maize model to simulate maize production under baseline and future climate scenarios. Adaptation options such as automatic planting, automatic application of irrigation and fertilization were considered, although cultivars were assumed constant over the baseline and future. After assessing representative stations across China, we projected changes in maize yield, growing period, evapotranspiration, and irrigation-water use for GMT changes of 1°C, 2°C, and 3°C, respectively. Results indicated that median values of projected decreases in the yields of irrigated maize without (with) consideration of CO2-fertilization effects ranged from 1.4% to 10.9% (1.6% to 7.8%), 9.8% to 21.7% (10.2% to 16.4%), and 4.3% to 32.1% (3.9% to 26.6%) for GMT changes of 1°C, 2°C, and 3°C, respectively. Median values of projected changes in irrigation-water use without (with) consideration of CO2-fertilization effects ranged from ?1.3% to 2.5% (?18.8% to 0.0%), ?43.6% to 2.4% (?56.1% to ?18.9%), and ?19.6% to 2.2% (?50.6% to ?34.3%), which were ascribed to rising CO2 concentration, increased precipitation, as well as reduced growing period with GMT increasing. For rainfed maize, median values of projected changes in yields without (with) consideration of CO2-fertilization effects ranged from ?22.2% to ?1.0% (?10.8% to 0.7%), ?27.6% to ?7.9% (?18.1% to ?5.6%), and ?33.7% to ?4.6% (?25.9% to ?1.6%). Approximate comparisons showed that projected maize yield losses were larger than previous estimates, particularly for rainfed maize. Our study presents an approach to project maize productivity and water use with GMT increases using process-based crop models and multiple climate scenarios. The resultant impact function is fundamental for identifying which climate change level is dangerous for food security.  相似文献   

13.
Diurnal and annual variations of CO2, O3, SO2, black carbon and condensation nuclei and their source areas were studied by utilizing air parcel trajectories and tropospheric concentration measurements at a boreal GAW site in Pallas, Finland. The average growth trend of CO2 was about 2.5 ppm yr−1 according to a 4-yr measurement period starting in October 1996. The annual cycle of CO2 showed concentration difference of about 19 ppm between the summer minimum and winter maximum. The diurnal cycle was most pronounced during July and August. The variation between daily minimum and maximum was about 5 ppm. There was a diurnal cycle in aerosol concentrations during spring and summer. Diurnal variation in ozone concentrations was weak. According to trajectory analysis the site was equally affected by continental and marine air masses. During summer the contribution of continental air increased, although the southernmost influences decreased. During daytime in summer the source areas of CO2 were mainly located in the northern parts of the Central Europe, while during winter the sources were more evenly distributed. Ozone showed similar source areas during summer, while during winter, unlike CO2, high concentrations were observed in air arriving from the sea. Sulfur dioxide sources were more northern (Kola peninsula and further east) and CO2 sources west-weighted in comparison to sources of black carbon. Source areas of black carbon were similar to source areas of aerosols during winter. Aerosol source area distributions showed signs of marine sources during spring and summer.  相似文献   

14.
Models that address the impacts of climate change on forests are reviewed at four levels of biological organization: global, regional or landscape, community, and tree. The models are compared for their ability to assess changes in fluxes of biogenic greenhouse gases, land use, patterns of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models have been used to consider more impacts than the other models. The development of landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research needing additional effort are identified: (1) linking socioeconomic and ecologic models; (2) interfacing forest models at different scales; (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes; and (4) relating information from different scales.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract DE-AC05-84OR21400.  相似文献   

15.
Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area’s historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area’s climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.  相似文献   

16.
The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen deposition were evaluated as drivers of NPP. Across all three scenarios, rangeland NPP increased by 0.26 % year?1 (7 kg C ha?1 year?1) but increases were not apparent until after 2030 and significant regional variation in NPP was revealed. The Desert Southwest and Southwest assessment regions exhibited declines in NPP of about 7 % by 2100, while the Northern and Southern Great Plains, Interior West and Eastern Prairies all experienced increases over 25 %. Grasslands dominated by warm season (C4 photosynthetic pathway) species showed the greatest response to temperature while cool season (C3 photosynthetic pathway) dominated regions responded most strongly to CO2 enrichment. Modeled NPP responses compared favorably with experimental results from CO2 manipulation experiments and to NPP estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS). Collectively, these results indicate significant and asymmetric changes in NPP for U.S. rangelands may be expected.  相似文献   

17.
重庆岩溶地区气候变化对植被的影响   总被引:1,自引:0,他引:1  
岩溶生态系统是一种脆弱的生态系统,植被类型与盖度成为岩溶环境中最重要、最敏感的自然要素。介绍了以重庆岩溶地区为对象,利用气象和NDVI数据,采用相关分析等方法探讨了植被对气候变化的响应。结果表明:(1)在多年平均水平上,气候对重庆岩溶植被生态系统起着比降水大的作用;在植被生长的年际变化方面,气温和降水对植被生长起着大致相反的趋势。(2)年际变化方面,气温和降水对植被生态系统的生长起着大致相反的作用。一般来说,气温与NDVI之间的关系为正相关。(3)植被指数的动态变化受气候波动的影响较大,近20 a来,总体呈增加的趋势。可为岩溶生态系统恢复和重建提供科学依据。  相似文献   

18.
We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ??7?ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7?ka on the platform underlying modern Florida Bay when sea level was ??6.2?m below its current position. By 5?ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ??3?ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ??3?ka. During the last ??2?ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ??1?ka and ??0.4?ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ??1?ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.  相似文献   

19.
20.
Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation changes triggered by climate change. To investigate the response of forests to climate change and herbivory by wild ungulates, we used the forest gap model ForClim v2.9.6 and simulated forest development in three climatically different valleys in the Swiss Alps. We used altitudinal transects on contrasting slopes covering a wide range of forest types from the cold (upper) to the dry (lower) treeline. This allowed us to investigate (1) altitudinal range shifts in response to climate change, (2) the consequences for tree species composition, and (3) the combined effect of climate change and ungulate herbivory. We found that ungulate herbivory changed species composition and that both basal area and stem numbers decreased with increasing herbivory intensity. Tree species responded differently to the change in climate, and their ranges did not change concurrently, thus causing a succession to new stand types. While climate change partially compensated for the reductions in basal area caused by ungulate herbivory, the combined effect of these two agents on the mix of the dominant species and forest type was non-compensatory, as browsing selectively excluded species from establishing or reaching dominance and altered competition patterns, particularly for light. We conclude that there is an urgent need for adaptive forest management strategies that address the joint effects of climate change and ungulate herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号