首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenocrysts of phlogopite from a micaceous kimberlite contain finely interlayered serpentine. These phenocrysts occur in the kimberlite groundmass and are altered along the mica layers and are slightly deformed. Lizardite is the predominant serpentine mineral, but chrysotile and mixed structures also occur. The lizardite occurs as lamellae within phlogopite, oriented such that (001) layers of the two minerals are parallel and the [100] direction of lizardite is parallel to the [100] or 110 directions of phlogopite. The serpentinized regions of phlogopite are localized and extensive along the (001) layers. Chrysotile fibers and chrysotile-like curled serpentine occur within regions of disrupted material, and polygonal structures occur in folded lizardite lamellae. Textural relations suggest three events: 1) replacement of phlogopite by lizardite, 2) deformation of the phenocrysts, and 3) partial transformation of the lizardite to chrysotile-like structures. Deformation features include openings along (001), folds, and regions of disrupted or broken material. The folded and broken material consists of lamellar lizardite and phlogopite, indicating that lamellar replacement preceded deformation. Intergrowths of lizardite and curled serpentine are associated with cleavage openings and voids in disrupted material, suggesting that a partial transformation of lizardite to chrysotile occurred within openings created by deformation. Clay minerals also occur within phlogopite as either a minor product of serpentinization or of late-stage alteration.  相似文献   

2.
黄伯钧  闵育顺 《矿物学报》1989,9(3):202-210
四川石棉矿产出四种蛇纹石矿物:纤蛇纹石,Povlen型纤蛇纹石、利蛇纹石和叶蛇纹石。它们的形态、结构、化学成分和红外光谱各具特征,本文对此进行了描述和讨论。纤蛇纹石以纵纤维脉和横纤维脉形式产出,以斜纤蛇纹石为主,含少量正纤和副纤蛇纹石。纵纤维蛇纹石可能由地壳浅层中的大气热水形成。Povlen型纤蛇纹石是蛇纹石族矿物的一个新变种,其形态、结构和化学成分都不同于其他蛇纹石矿物。  相似文献   

3.
High-pressure behaviour of serpentine minerals: a Raman spectroscopic study   总被引:3,自引:2,他引:3  
Four main serpentine varieties can be distinguished on the basis of their microstructures, i.e. lizardite, antigorite, chrysotile and polygonal serpentine. Among these, antigorite is the variety stable under high pressure. In order to understand the structural response of these varieties to pressure, we studied well-characterized serpentine samples by in situ Raman spectroscopy up to 10 GPa, in a diamond-anvil cell. All serpentine varieties can be metastably compressed up to 10 GPa at room temperature without the occurrence of phase transition or amorphization. All spectroscopic pressure-induced changes are fully reversible upon decompression. The vibrational frequencies of antigorite have a slightly larger pressure dependence than those of the other varieties. The O–H-stretching modes of the four varieties have a positive pressure dependence, which indicates that there is no enhancement of hydrogen bonding in serpentine minerals at high pressure. Serpentine minerals display two types of hydroxyl groups in the structure: inner OH groups lie at the centre of each six-fold ring while outer OH groups are considered to link the octahedral sheet of a given 1:1 layer to the tetrahedral sheet of the adjacent 1:1 layer. On the basis of the contrasting behaviour of the Raman bands as a function of pressure, we propose a new assignment of the OH-stretching bands. The strongly pressure-dependent modes are assigned to the vibrations of the outer hydroxyl groups, the less pressure-sensitive peaks to the inner ones.  相似文献   

4.
 Polygonal serpentine (PS) from selected serpentinite were studied using transmission electron microscopy. Fiber axis selected-area electron diffraction (SAED) patterns and electron micrographs reveal orthogonal and monoclinic lizardite polytypes. The PS models by Chisholm (1992) and Baronnet et al. (1994) do not fit SAED measurements. Experimental results are matched with calculated diffraction geometry and intensities, as well as with simulated images, indicating inversion of the tetrahedral layer at sector boundaries. The structural relationships between chrysotile and PS are discussed. Two types of 30-sectored PS are distinguished. In “regular PS” the fiber axis is [100], in “helical PS” the fiber axis points into a [0] direction with large u value (u≫ν). Helical PS can be regarded as a lizardite analogue of helical chrysotile. Received December 6, 1995/Revised, accepted May 8, 1996  相似文献   

5.
We determined the lithium isotope fractionation between synthetic Li-bearing serpentine phases lizardite, chrysotile, antigorite, and aqueous fluid in the P,T range 0.2–4.0 GPa, 200–500°C. For experiments in the systems lizardite-fluid and antigorite-fluid, 7Li preferentially partitioned into the fluid and Δ7Li values followed the T-dependent fractionation of Li-bearing mica-fluid (Wunder et al. 2007). By contrast, for chrysotile-fluid experiments, 7Li weakly partitioned into chrysotile. This contrasting behavior might be due to different Li environments in the three serpentine varieties: in lizardite and antigorite lithium is sixfold coordinated, whereas in chrysotile lithium is incorporated in two ways, octahedrally and as Li-bearing water cluster filling the nanotube cores. Low-temperature IR spectroscopic measurements of chrysotile showed significant amounts of water, whose freezing point was suppressed due to the Li contents and the confined geometry of the fluid within the tubes. The small inverse Li-isotopic fractionation for chrysotile-fluid results from intra-crystalline Li isotope fractionation of octahedral Li[6] with preference to 6Li and lithium within the channels (Li[Ch]) of chrysotile, favoring 7Li. The nanotubes of chrysotile possibly serve as important carrier of Li and perhaps also of other fluid-mobile elements in serpentinized oceanic crust. This might explain higher Li abundances for low-T chrysotile-bearing serpentinites relative to high-T serpentinites. Isotopically heavy Li-bearing fluids of chrysotile nanotubes could be released at relatively shallow depths during subduction, prior to complete chrysotile reactions to form antigorite. During further subduction, fluids produced during breakdown of serpentine phases will be depleted in 7Li. This behavior might explain some of the Li-isotopic heterogeneities observed for serpentinized peridotites.  相似文献   

6.
Serpentinite bodies within the Franciscan Complex, a Mesozoic accretionary prism located in California, USA, display a unique form of deformation that involves the recrystallization of chrysotile and the formation of a block‐in‐matrix structure. The phacoidal‐shaped blocks have a preferred orientation, and result from the local replacement of serpentine minerals by chrysotile grains that are aligned parallel to ductile shear planes such as S–C foliation; ultimately, some of the rocks evolved into chrysotile schist. The relic blocks are also fragmented into multiple parts, with the spaces between fragments being infilled by recrystallized chrysotile. The low coefficient of friction of chrysotile means that this deformation process acts to suppress the frictional properties of the entire serpentinite body within the forearc mantle. This phenomenon can be attributed to the slip style that occurs in aseismic regions of subduction zones in areas shallower than the stability field of antigorite.  相似文献   

7.
At Glenrock, near the southern end of the Peel Fault System, two fault zones are delineated by mélanges in which serpentinite is the main rock type.Protogranular and mylonitic textures are present in relicts of the parent peridotite and in blocks of massive pseudomorphic serpentinite that are surrounded by schistose serpentinite. In schistose serpentinite, the earliest foliation (S1) is defined, microscopically, by the parallel alignment of platy and fibrous serpentine minerals (lizardite and chrysotile) and by trains of magnetite and flattened serpentine pseudomorphs after olivine and pyroxene. It is considered that the schistosity formed perpendicular to the direction of maximum shortening, under conditions in which lizardite and chrysotile were ductile, but antigorite was not, by breakdown of pre-existing serpentine minerals and new growth of lizardite and chrysotile.Post-s1 foliations (S2andS3) superficially resemble crenulation cleavages in the field but, microscopically, show evidence of shear displacement and are referred to as microshear sets. They probably originated in the ductile-brittle transitional field of serpentine behaviour (Raleigh and Paterson, 1965).  相似文献   

8.
广西陆川蛇纹石玉的岩相结构及成矿机理   总被引:1,自引:2,他引:1  
王永亚  干福熹 《岩矿测试》2012,31(5):788-793
应用外束质子激发X射线荧光光谱法、X射线衍射、激光拉曼光谱、扫描电子显微镜等无损分析技术,对广西陆川蛇纹石玉的成分、物相和结构进行分析。X射线衍射结果显示样品的衍射峰主要位于0.724、0.456、0.362、0.248、0.153和0.150 nm处,表明陆川蛇纹石玉主要矿物成分是蛇纹石,同时伴生方解石矿物与蛇纹石形成穿插交织结构。成矿机理分析表明,陆川蛇纹石玉是由白云质大理岩热液交代作用形成的,和广东的信宜玉均属于富镁碳酸盐型蛇纹石。拉曼光谱显示叶蛇纹石的特征峰位于229、376、457、686和1046 cm-1处,纤蛇纹石的特征峰位于228、345、386、624、690和1102 cm-1处,通过激光拉曼光谱可以快速区分陆川蛇纹石玉中纤蛇纹石和叶蛇纹石两种不同结构的蛇纹石亚种。  相似文献   

9.
吉林蛇纹石玉特征初步研究   总被引:1,自引:0,他引:1  
对产自吉林省白山市抚松县沿江乡的蛇纹石玉样品分别从地质背景、激光诱导离解光谱、X射线粉末衍射和红外吸收光谱等方面进行了研究,并与辽宁岫玉样品进行了对比。结果表明,吉林蛇纹石玉样品的主要颜色为深浅不一的绿色,主要含Si,Al,Cr,Fe,Mn,Mg,Ca,Sr和Na等元素,其中Ca与Mg的谱线较强,Al,Mn与Sr的质量分数少;X射线粉末衍射结果显示,样品的主要矿物组成为纤蛇纹石,红外光谱结果也显示了其具有纤蛇纹石峰值的特征。  相似文献   

10.
采用Fourier变换红外吸收光谱和X射线粉晶衍射技术对四川石棉县蛇纹石猫眼进行了研究。红外吸收光谱结果表明:四川蛇纹石猫眼可分为纤蛇纹石和叶蛇纹石两种类型,两者在(960-1100)cm-1和(3600-3690)cm-1的范围内由Si-O伸缩振动的E1类振动和OH伸缩振动表现出的红外谱带分裂强度及谱带特征存在明显的差异。在(960- 1100)cm-1间:纤蛇蚊石的红外光谱分裂成三个明显的谱带,而叶蛇纹石在此区间只有两条谱带。在570cm-1附近的红外谱带以肩状出现;OH伸缩振动区:纤蛇蚊石出现两条红外谱带,而叶蛇蚊石只出现一条红外谱带。X射线粉晶衍射结果表明:叶蛇蚊石具有d202=0.2522nm(I/I0=19)和d203=0.2430nm(I/I0=18)的特征谱线,而纤蛇纹石则具有d202、006=0.2446nm(I/I0=29)的特征谱线,d020>0.245nm近0.249 nm的特征谱线缺失。  相似文献   

11.
《International Geology Review》2012,54(11):2017-2032
Sungulite is variety of serpentine finely to coarsely flaky, white with a silky luster. The term should be applied to coarse tabular serpentine (antigorite) in pseudomorphs on vermiculite. It is formed out of vermiculite and is surficial in origini occurring as a gradual replacement of vermiculite in lower parts of ancient weathering crusts of magnesian rocks with ferro-magnesian micas. It appears that the genetic relationships between kaolinite and halloysite are quite similar to those between sungulite and chrysotile. — J. J. Finney.  相似文献   

12.
High-resolution (HRTEM) and analytical electron (AEM) microscopic evidence for a polysomatic series based on regular interstratifications of serpentine (amesite) and chlorite (clinochlore) are reported from an altered skarn in Irian Jaya. The assemblage includes regular interstratifications of one clinochlore and two (2:1; three structural variants), three (3:1), and four (4:1) amesite composition 1:1 layers as well as randomly interstratified serpentine and chlorite. The order of abundance of regularly interstratified minerals is 1:1>2:1>4:1>3:1. Atomic-resolution images, image simulations, and comparison between calculated and observed diffracted intensities verify the proposed 1:1 and 2:1 structures and reveal details of their defect microstructures. AEM data show that compositions are linear combinations of the associated amesite and clinochlore. The 1:1, 2:1, 3:1, and 4:1 minerals occur both as discrete sub-micron crystals and as domains within serpentine or chlorite. Some crystals of the 2:1 phase were sufficiently large for study by X-ray precession and powder methods. Crystals of the regularly interstratified 2:1, 3:1, and 4:1 phases are usually bent. High-resolution images reveal that, within polygonal segments, the layers commonly exhibit a few degrees of curvature with segments separated by antigorite-type offsets. Deformed chlorite crystals are probably replaced by interstratified minerals during an aluminum metasomatic event. Al may have been deposited from sulfuric acid-rich solutions when they interacted with calcite and dolomite to form the anhydrite-rich corona around the phyllosilicate-rich region of the core. The interstratified chlorite (clinochlore composition) suggests aluminum addition by selective conversion of a sub-set of the chlorite layers to amesite. Defect microstructures suggest that crystals of regularly interstratified material grew by direct structural modification of preexisting chlorite. Regular interstratifications may form in response to thermally controlled limits on Al solubility in chlorite and heterogeneities in the distribution of Al-rich solutions during metasomatism. Regularly interstratified minerals coexist with randomly interstratified serpentine/chlorite, chrysotile, antigorite, lizardite, and several amesite and chlorite polytypes. Tentative chlorite and amesite identifications include one-layer (b=97°, probably IIbb), one-layer (b=90, possibly Ibb), two-, and three-layer chlorites, and 2H1 (but possibly 1M or 1T), rhombohedral (3R or 6R), and twelve-layer (Tc; non standard) serpentine polytypes. The complex phyllosilicates attest to rampant chemical and structural disequilibrium.  相似文献   

13.
The infrared spectrum of Orgueil is discordant with spectra of chrysotile, antigorite, and lizardite polymorphs of serpentine. The spectrum of chamosite is in good, but not exact, agreement with that of Orgueil.  相似文献   

14.
We present a structural analysis of serpentine-bearing faults and shear zones in the Koniambo Massif, one of the klippes of the Peridotite Nappe of New Caledonia. Three structural levels are recognized. The upper level is characterized by a dense network of fractures. Antigorite and polygonal serpentine form slickenfibers along fault planes with distinct kinematics. As a result, the upper level keeps the record of at least two deformation events, the first associated with the growth of antigorite (WNW-ESE extension), the second with the growth of polygonal serpentine (NW–SE compression). The lower level coincides with the ‘serpentine sole’ of the nappe, which consists of massive tectonic breccias overlying a layer of mylonitic serpentinites. The sole records pervasive tangential shear with top-to-SW kinematics and represents a décollement at the base of the nappe. The intermediate level is characterized by the presence of several meters-thick conjugate shear zones accommodating NE–SW shortening. Like the sole, these shear zones involve polygonal serpentine and magnesite as the main syn-kinematic mineral phases. The shear zones likely root into the basal décollement, either along its roof or, occasionally, around its base. Compared to top-to-SW shearing along the sole, the two deformation events recorded in the upper level are older.The three structural levels correlate well with previously recognized spatial variations in the degree of serpentinization. It is therefore tempting to consider that the intensity of serpentinization played a major role in the way deformation has been distributed across the Peridotite Nappe. However, even the least altered peridotites, in the upper level, contain so much serpentine that, according to theoretical and experimental work, they should be nearly as weak as pure serpentinite. Hence, no strong vertical gradient in strength due to variations in the degree of serpentinization is expected within the exposed part of the nappe. Our proposal is that strain localization along the serpentine sole results from the juxtaposition of the nappe, made of weak serpentinized peridotites, against the strong mafic rocks of its substratum. This interpretation is at odds with the intuitive view that would consider the nappe, made of peridotites, as stronger than its basement.  相似文献   

15.
最近在江苏东海的水晶市场上出现了一种名为“斑马石一的玉石,该玉石总体颜色为墨绿色,其中有白色条纹呈带状分布并呈丝绢光泽。为了查明其组成,利用偏光显微镜、X射线粉末衍射仪、红外光谱仪、拉曼光谱仪以及激光诱导离解光谱仪等测试方法对该样品进行了测试分析。结果表明,该“斑马石”实际就是一种蛇纹石的集合体材料。其绿色部分的主要矿物组成为利蛇纹石,其次为绿泥石,白色部分由纤蛇纹石构成,含少量绿泥石,黑色包裹体为磁铁矿。这种材料不同于一般的蛇纹石玉,在于该玉石中含有一些定向的纤蛇纹石的平行纤维条带,正是这种纤维状平行排列的结构,导致了“斑马石”中呈丝绢光泽的条带。“斑马石”的折射率,相对密度及荧光特征与一般的蛇纹石玉无差异。  相似文献   

16.
通过FT-IR和XRD对四川新康、陕西陕南、甘肃阿克塞和青海茫崖四大矿区温石棉的物相成分、谱学特征进行测试分析,利用MTT法、流式细胞术检测了4种温石棉纤维粉尘染毒A549细胞后的细胞存活率、凋亡率和细胞周期分布,比较和探讨了四大矿区温石棉纤维粉尘抑制细胞增殖能力的大小及其对细胞凋亡和周期阻滞的影响。研究结果显示,四大矿区温石棉的主要物相是斜纤蛇纹石,新康温石棉成分比其他3种温石棉的复杂,阿克塞和茫崖温石棉的成分相似;四大矿区的温石棉化学基团基本相同,阿克塞和茫崖温石棉纤维的表面结构较陕南和新康温石棉的完善。4种温石棉均能不同程度地抑制A549细胞增殖,诱导细胞凋亡和周期阻滞:茫崖组凋亡率最大(22. 56±2. 56)%,陕南组凋亡率最小(19. 57±3. 07)%;细胞周期阻滞均以G2/M期阻滞为主,新康、陕南、阿克塞和茫崖组处于G2/M期细胞比例分别增加8. 90%、8. 58%、9. 13%和10. 44%。4种温石棉导致细胞凋亡和周期阻滞的能力:茫崖新康阿克塞陕南。  相似文献   

17.
The Beni Bousera massif forms part of the Sebtide units in the internal Rif Mountain (Morocco). It is mainly composed of mantle peridotites surrounded by crustal metamorphic rocks (kinzigites, micaschists, and schists). The serpentinization affects all of peridotite massif to various degrees. Serpentinization is concentrated at the top of the peridotites, along the mylonitized zone, and in the NE part of the massif. It is manifested by the formation of mesh and hourglass textures along the tectonic foliation in the highly serpentinized peridotites; and brecciated texture in the least serpentinized peridotites. Pyroxene minerals are still intact hosting few serpentine veins. These petrographic features are consistent with the geochemical data, marked by the increasing of LOI and decreasing of MgO and FeO toward the top of the massif and Aaraben fault. The Raman characterization of serpentine with the brecciated mesh and hourglass textures correspond to lizardite type whereas the serpentine with the vein texture is formed by lizardite + chrysotile.  相似文献   

18.
蛇纹石化是海底最重要的水岩相互作用之一,指基性岩和超基性岩中的橄榄石和辉石等镁铁质矿物在相对低温条件下发生水热蚀变产生蛇纹石等矿物的热液变质作用。蛇纹石族矿物主要有三种,分别是利蛇纹石、纤蛇纹石和叶蛇纹石。低温状态蛇纹石族矿物主要以利蛇纹石和纤蛇纹石的形式存在,高温状态下主要以叶蛇纹石的形式存在。影响大洋蛇纹石化过程的因素不容忽视,温度、氧化还原程度、pH值、水岩比(W/R)等都在其中扮演着重要的角色。总的来说,地幔物质易出露在地壳减薄区域和断裂构造处,这有利于与流体充分接触反应,从而决定了大洋蛇纹石化作用发生的可能位置。对蛇纹石化程度的描述,当前人们大多通过岩石微观结构、地球化学指标来定性指示,磁学指标有望实现对蛇纹石化程度的定量解释。蛇纹石化作用对海底磁异常、地球生命演化进程、成矿作用等都有一定的贡献。此外,俯冲带脱水及弧岩浆的形成都与之有联系。总之,基性与超基性岩石蛇纹石化与俯冲带蛇纹岩脱水过程是地球水循环过程的重要机制,但未来揭示蛇纹岩的磁学性质和俯冲变质过程,仍需进一步探索。  相似文献   

19.
Serpentines are hydrous phyllosilicates which form by hydration of Mg–Fe minerals. The reasons for the occurrence of the structural varieties lizardite and chrysotile, with respect to the variety antigorite, stable at high pressure, are not yet fully elucidated, and their relative stability fields are not quantitatively defined. In order to increase the database of thermodynamic properties of serpentines, the PV Equations of State (EoS) of lizardite and chrysotile were determined at ambient temperature up to 10 GPa, by in situ synchrotron X-ray diffraction in a diamond-anvil cell. Neither amorphization nor hysteresis was observed during compression and decompression, and no phase transition was resolved in lizardite. In chrysotile, a reversible change in compression mechanism, possibly due to an unresolved phase transition, occurs above 5 GPa. Both varieties exhibit strong anisotropic compression, with the c axis three times more compressible than the others. Fits to ambient temperature Birch–Murnaghan EoS gave for lizardite V 0=180.92(3) Å3, K 0 = 71.0(19) GPa and K′ 0=3.2(6), and for chrysotile up to 5 GPa, V 0 = 730.57(31) Å3 and K 0 = 62.8(24) GPa (K′ 0 fixed to 4). Compared to the structural variety antigorite is stable at high pressure (HP) (Hilairet et al. 2006), the c axis is more compressible in these varieties, whereas the a and b axes are less compressible. These differences are attributed to the less anisotropic distribution of stiff covalent bonds in the corrugated structure of antigorite. The three varieties have almost identical bulk compressibility curves. Thus the compressibility has negligible influence on the relative stability fields of the serpentine varieties. They are dominated by first-order thermodynamic properties, which stabilizes antigorite at high temperature with respect to lizardite, and by out-of-equilibrium phenomena for metastable chrysotile (Evans 2004).  相似文献   

20.
Serpentinites are metamorphic rocks with good technological properties and valuable ornamental characteristics, which have been exploited since ancient times. Actually, their use is limited and monitored in several countries worldwide because they can contain fibrous asbestos minerals that may be carcinogenic. Furthermore, certain types of fibrous minerals can be confused with asbestos, and must therefore be carefully investigated. We have investigated the possible presence of the asbestos and non-asbestos fibrous phases contained in serpentinitic rocks in a meta-ophiolitic sequence from the Gimigliano-Mount Reventino Unit (Southern Italy), which had not been previously assessed. The detection and quantification of asbestos and the correct distinction of the fibrous non-asbestos minerals are very important not only from a scientific point of view, but also from a legislative one. This is especially the case for the administrative agencies that have to take decisions with regards to the implementation of public and occupational health protection measures (e.g., in road yards and quarry excavations). As a consequence of this, serpentinitic rock samples have been characterized in detail through X-ray powder diffraction, scanning and transmission electron microscopy combined with energy-dispersive spectrometry, analytical electron microscopy (SEM–EDS and TEM–AEM), differential scanning calorimetry, thermogravimetry and micro-Raman spectroscopy. Two kinds of asbestos and four kinds of non-asbestos fibrous silicates have been detected in the examined samples. In order of decreasing abundance these are polygonal serpentine, chrysotile, fibrous antigorite, tremolite, gedrite and magnesiohornblende. The size, morphology, crystallinity and chemical composition of the fibres were also discussed, in the light of the possible role these properties could play in the carcinogenic effect on human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号