首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze night-time near-infrared (NIR) thermal emission images of the Venus surface obtained with the 1-μm channel of the Venus Monitoring Camera onboard Venus Express. Comparison with the results of the Magellan radar survey and the model NIR images of the Beta-Phoebe region show that the night-time VMC images provide reliable information on spatial variations of the NIR surface emission. In this paper we consider if tessera terrain has the different NIR emissivity (and thus mineralogic composition) in comparison to the surrounding basaltic plains. This is done through the study of an area SW of Beta Regio where there is a massif of tessera terrain, Chimon-mana Tessera, surrounded by supposedly basaltic plains. Our analysis showed that 1-μm emissivity of tessera surface material is by 15–35% lower than that of relatively fresh supposedly basaltic lavas of plains and volcanic edifices. This is consistent with hypothesis that the tessera material is not basaltic, maybe felsic, that is in agreement with the results of analyses of VEX VIRTIS and Galileo NIMS data. If the felsic nature of venusian tesserae will be confirmed in further studies this may have important implications on geochemical environments in early history of Venus. We have found that the surface materials of plains in the study area are very variegated in their 1-μm emissivity, which probably reflects variability of degree of their chemical weathering. We have also found a possible decrease of the calculated emissivity at the top of Tuulikki Mons volcano which, if real, may be due to different (more felsic?) composition of volcanic products on the volcano summit.  相似文献   

2.
The age relations between 36 impact craters with dark paraboloids and other geologic units and structures at these localities have been studied through photogeologic analysis of Magellan SAR images of the surface of Venus. Geologic settings in all 36 sites, about 1000 × 1000 km each, could be characterized using only 10 different terrain units and six types of structures. These units and structures form a major stratigraphic and geologic sequence (from oldest to youngest): 1) tessera terrain; 2) densely fractured terrains associated with coronae and in the form of remnants among plains; 3) fractured and ridged plains and ridge belts; 4) plains with wrinkle ridges; 5) ridges associated with coronae annulae and ridges of arachnoid annulae which are contemporary with wrinkle ridges of the ridged plains; 6) smooth and lobate plains; 7) fractures of coronae annulae, and fractures not related to coronae annulae, which disrupt ridged and smooth plains; 8) rift-associated fractures; 9) craters with associated dark paraboloids, which represent the youngest 10% of the Venus impact crater population (Campbellet al., 1992), and are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; surficial streaks and patches are approximately contemporary with dark-paraboloid craters.Mapping of such units and structures in 36 randomly distributed large regions (each 106 km2) shows evidence for a distinctive regional and global stratigraphic and geologic sequence. On the basis of this sequence we have developed a model that illustrates several major themes in the history of Venus. Most of the history of Venus (that of its first 80% or so) is not preserved in the surface geomorphological record. The major deformation associated with tessera formation in the period sometime between 0.5–1.0 b.y. ago (Ivanov and Basilevsky, 1993) is the earliest event detected. In the terminal stages of tessera formation, extensive parallel linear graben swarms representing a change in the style of deformation from shortening to extension were formed on the tessera and on some volcanic plains that were emplaced just after (and perhaps also during the latter stages of the major compressional phase of tessera emplacement. Our stratigraphic analyses suggest that following tessera formation, extensive volcanic flooding resurfaced at least 85% of the planet in the form of the presently-ridged and fractured plains. Several lines of evidence favor a high flux in the post-tessera period but we have no independent evidence for the absolute duration of ridged plains emplacement. During this time, the net state of stress in the lithosphere apparently changed from extensional to compressional, first in the form of extensive ridge belt development, followed by the formation of extensive wrinkle ridges on the flow units. Subsequently, there occurred local emplacement of smooth and lobate plains units which are presently essentially undeformed. The major events in the latest 10% of the presently preserved history of Venus (less than 50 m.y. ago) are continued rifting and some associated volcanism, and the redistribution of eolian material largely derived from impact crater deposits.Detailed geologic mapping and stratigraphic synthesis are necessary to test this sequence and to address many of the outstanding problems raised by this analysis. For example, we are uncertain whether this stratigraphic sequence corresponds to geologic events which were generally synchronous in all the sites and all around the planet, or whether the sequence is simply a typical sequence of events which occurred in different places at different times. In addition, it is currently unknown whether the present state represents a normal consequence of the general thermal evolution of Venus (and is thus representative of the level of geological activity predicted for the future), or if Venus, has been characterized by a sequence of periodic global changes in the composition and thermal state of its crust and upper mantle (in which case, Venus could in the future return to levels of deformation and resurfacing typical of the period of tessera formation).  相似文献   

3.
Lakshmi Planum is distinctive and unique on the surface of Venus as an expansive (~2 × 106km2), relatively smooth, flat plateau containing two large shield volcanoes and abundant volcanic plains in the midst of a region of extreme relief. It rises 3–5 km above the datum and is surrounded on all sides by bands of mountains interpreted to be of compressional tectonic origin. The major units mapped on Lakshmi are volcanic edifices, smooth, ridged and grooved plains units, and structural units referred to as ridged terrain. Three styles of volcanism are observed to dominate the surface of Lakshmi. Distributed effusive volcanism is associated with extensive plains deposits and many of the small shields, domes and cones mapped within the plateau. Centralized effusive volcanism is primarily associated with the paterae, Colette and Sacajawea, and their circumferential low-shield-forming deposits. The precise origin and evolution of these unusually large and complex structures is not understood, although a catastrophic, explosive origin is unlikely. Pyroclastic volcanism may be represented by a unit referred to as the diffuse halo. The origin and evolution of Lakshmi Planum is closely related to its compressional tectonic environment; volcanism on Lakshmi has occurred synchronously with tectonism in the surrounding orogenic belts. A model for the origin and evolution of Lakshmi Planum consisting of a continuous sequence of convergence and horizontal shortening of crustal segments against a preexisting block of tessera seems best able to account for the elevation, plateau shape and irregular polygonal outline of Lakshmi, as well as the presence of ridged terrain and its resemblance to tessera. Volcanism on Lakshmi is proposed to be the result of basal melting of a thickened crustal root. According to this model, the origin and evolution of Lakshmi Planum has consisted of the following sequence of events: (1) formation of a large, elevated block of tessera surrounded by low-lying plains; (2) convergence and underthrusting of crustal segments to produce peripheral mountain ranges, thickening, and uplift of the plateau; and (3) basal melting of the thickened crust and underthrust material and surface volcanism that occurred synchronously with continued edge deformation.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence). Gordon H. Pettengill (MIT. Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

4.
The interplanetary mission, Venera-D, which is currently being planned, includes a lander. For a successful landing, it is necessary to estimate the frequency distributions of slopes of the Venusian surface at baselines that are comparable with the horizontal dimensions of lander (1–3 m). The available data on the topographic variations on Venus preclude estimates of the frequency of the short-wavelength slopes. In our study, we applied high-resolution digital terrain models (DTM) for specific areas in Iceland to estimate the slopes on Venus. The Iceland DTMs have 0.5 m spatial and 0.1 m vertical resolution. From the set of these DTMs, we have selected those that morphologically resemble typical landscapes on Venus such as tessera, shield, regional, lobate, and smooth plains. The mode of the frequency distribution of slopes on the model tessera terrain is within a 30°–40° range and a fraction of the surface has slopes <7°, which is considered as the upper safety limit. This is the primary interest. The frequency distribution of slopes on the model tessera is not changed significantly as the baseline is changed from 1 m to 3 m. The terrestrial surfaces that model shield and regional plains on Venus have a prominent slope distribution mode between 8°–20° and the fraction of the surfaces with slopes <7° is less than 30% on both 1 m and 3 m baselines. A narrow, left-shifted histogram characterizes the model smooth plains surfaces. The fraction of surfaces with slopes <7° is about 65–75% for the shorter baseline (1 m). At the longer baseline, the fraction of the shallow-sloped surfaces is increased and fraction of the steep slopes is decreased significantly. The fraction of surfaces with slopes <7° for the 3-m baseline is about 75–88% for the terrains that model both lobate and smooth plains.  相似文献   

5.
《Planetary and Space Science》2007,55(14):2097-2112
We briefly describe the history of landings on Venus, the acquired geochemical data and their potential petrologic interpretations. We suggest a new approach to Venus landing site selection that would avoid the potential contamination by ejecta from upwind impact craters. We also describe candidate units to be sampled in both in situ measurement and sample return missions. For the in situ measurements, the “true” tessera terrain (tt) material is considered as the highest priority goal with the second priority given to transitional tessera terrain (ttt), shield plains (psh) and lobate plains (pl) materials. For the sample return mission, the material of regional plains with wrinkle ridges (pwr) is considered as the highest priority goal with the second priority given to tessera terrain (tt) material. Combining the desire to study materials of specific geologic units with the problem of avoiding potential contamination by ejecta from upwind impact craters, we have suggested several candidate landing sites for each of the geologic units. Although spacecraft ballistics and other constraints of specific mission profiles (VEP or others) may lead to the selection of different candidate sites, we believe that the approaches outlined in this paper can be helpful approach in optimizing mission science return.  相似文献   

6.
New radar images (resolution 1.5–2.0 km) obtained from the Arecibo Observatory are used to assess the geology of a portion of the equatorial region of Venus (1 S to 45 N and from 270 eastward to 30). Nine geologic units are mapped on the basis of their radar characteristics and their distribution and correspondences with topography are examined. Plains are the most abundant unit, make up 80%; of the area imaged, and are divided into bright, dark, and mottled. Mottled plains contain abundant lava flows and domes suggesting that volcanism forming plains is a significant process in the equatorial region of Venus. Tesserae are found primarily on Beta Regio and its eastern flank and are interpreted to be locally stratigraphically older units, predating episodes of faulting and plains formation. Isolated regions of tesserae concentrated to the north of Western Eistla Regio are interpreted to predate the formation of plains in this area. The volcanoes Sif Mons, Gula Mons, Sappho, Theia Mons, and Rhea Mons, are found exclusively in highland regions and their deposits are interpreted as contributing only a small percentage to the overall volume of the regional topography. The northern 15 of the image data overlap with Venera 15/16 images making it possible to examine the characteristics of geologic units mapped under various illumination directions and incidence angles. Surface panoramas and geochemical data obtained from Venera landers provide ground truth for map units, evidence that plains are made up of basaltic lava flows, and that linear deformation zones contain abundant blocks and cobbles. On the basis of spatial and temporal relationships between geologic units, the highlands of Beta Regio and Western Eistla Regio are interpreted to have formed in association with areas of mantle upwelling which uplift plains, cause rifting, and in the case of Beta Regio, disrupt a large region of tessera. Zones of linear belt deformation in Beta Regio and Western Eistla Regio are interpreted to be extensional and indicate that at least limited extension has occurred in both regions. The images reveal for the first time that southern Devana Chasma is a region of overlapping rift valleys separated by a distance of 600 km. Linear deformation zones in Guinevere Planitia, separating Beta Regio and Eistla Regio, converge at a region of ovoids forming a discontinuous zone of disruption and completes an equatorial encompassing network of highlands and tectonic features. The similarity between ovoids and coronae suggests a mechanism of formation associated with hotspots or mantle plumes. Analysis of the distribution and density of impact craters suggests a surface age for this part of the planet similar to or slightly less than that determined for the northern high latitudes from Venera 15/16 data (0.3 to 1.5 by) and comparable to that calculated for the southern hemisphere.  相似文献   

7.
Aiming to study the relationship between Venus surface heights and surface roughness, the Pioneer Venus surface altitude map and map of r.m.s. slope in m-dkm scale have been analy sed for the Beta and Ishtar regions using a system of digital image processing. To integrate the data obtained, the results of geomorphological analysis of Venera 9 and 10 TV panoramas as well as gamma-spectrometric and photometric measurements were used. The analysis gives proof that Venera 9 and 10 landing sites represent geologic-morphologic situations typical of Venus, thus enabling the results of observations made at landing sites to be extended to large provinces. Apparently this conclusion is also applicable to the Venera 8 landing site. No strong relationship exists between the roughness of the surface and its altitude or the amount of a regional slope; neither for the Beta nor for the Ishtar region. A weak direct correlation observable for roughness-altitude pairs for the Beta region and roughness-altitude, roughness-slope pairs for the Ishtar region are quite obviously a consequence of regional roughness control, i.e. of an overall character of geological structure. On Venus the factors contributing to higher surface roughness on the m-dkm scale are, obviously, mostly volcanic and tectonic in their nature whilst those responsible for smoothing-out of the surface are chiefly exogenic. The rate of exogenic transformation of the Cytherean surface may be fairly high. On Venus, similarly as on the Earth, active tectono-magmatic processes have possibly taken place in recent geological epochs. One of the places where they are manifest is an extensive zone running from north to south across the Beta, Phoebe and Themis highlands. Within its limits occur both the process of basaltic shield-type volcanism and areal basalt effusions at low hypsometric levels accounting for the formation of lowland plains at the expense of ancient rolling plains. The basalts of the shield volcano Beta show some differences in composition compared to those of areal effusions at low hypsometric levels. The overall character of Cytherean tectonics in the recent geologic epoch is apparently block-type with a predominance of vertical movements. Against the background of the sinking of some of the blocks the other ones are rising and, possibly, such compensation upheavals have been responsible for the formation of the Ishtar region.  相似文献   

8.
We discuss a change in the resurfacing regimes of Venus and probable ways of forming the terrain types that make up the surface of the planet. The interpretation of the nature of the terrain types and their morphologic features allows us to characterize their scientific priority and the risk of landing on their surface to be estimated. From the scientific point of view, two terrain types are of special interest and represent easily achievable targets: the lower unit of regional plains and the smooth plains associated with impact craters. Regional plains are probably a melting from the upper fertile mantle. The material of smooth plains of impact origin is a well-mixed and representative sample of the Venusian crust. The lower unit of regional plains is the most widespread one on the surface of Venus, and it occurs within the boundaries of all of the precalculated approach trajectories of the lander. Smooth plains of impact origin are crossed by the approach trajectories precalculated for 2018 and 2026.  相似文献   

9.
Abstract— The boundaries between the highly deformed tessera terrain and adjacent volcanic plains are primarily those of embayment, where the tessera are stratigraphically older than the plains. Previous studies show that <3% of these boundaries display evidence of tectonic tilting after the emplacement of the plains. One of these unusual boundaries is the western margin of Alpha Regio tessera, a zone ~ 100 km in width that separates the plains from the interior structures of Alpha. This zone is characterized by margin parallel, fine‐scale (1–5 km) fractures, graben, and ridges that truncate and postdate the broad‐scale (10–30 km) ridges and troughs of the interior of Alpha. The western margin is embayed by several volcanic plains units that are progressively tilted and deformed by graben with closer proximity to Alpha Regio. The earliest deformation of the plains consists of northeast‐trending graben ~1 km in width that are similar in morphology and spacing to graben that deform intratessera plains and plains at the eastern boundary of Alpha. Northwest‐trending graben then formed over an interval marked by the emplacement of two additional plains units; their similarity to northwest‐trending structures emanating from Eve corona and the Lada Terra rift suggests a possible genetic relationship. The tilting of the plains adjacent to western Alpha implies relative vertical movement of the margin, either uplift of tessera or downwarping of plains subsequent to the formation and relaxation of the interior of Alpha Regio. Subsidence of plains at this locale is supported by the presence of a basin to the west of Alpha surrounded by a fracture belt contiguous with western Alpha. Thus, the fractures and deformation at the western boundary of Alpha may be related to the formation of a basin to the west of Alpha with some influence from the northernmost extension of the Lada Terra rift. Such a basin is not present at a section along the eastern boundary of Alpha Regio, where the origin of tilted plains remains equivocal. We conclude that the deformation along the western margin of Alpha Regio is not directly related to the process of tessera formation but is an example of tessera modification and is consistent with the stratigraphic position of tessera as the oldest unit observed on Venus.  相似文献   

10.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   

11.
First, a sequence of four-zone models for the interior of Venus is constructed under the assumption of hydrostatic equilibrium. While the equation of state for each zone is taken to be the Bullen's relation with its coefficients consistent with the PREM Earth model (Dziewonski and Anderson, 1981), the position of core-mantle boundary is determined by matching solutions of the Emden's equation in different regions. The results of hydrostatic models indicate the presence of a reasonably large molten iron core in Venus, broadly similar to the Earth. It is also found that the position of the core-mantle interface is nearly model-independent. Second, we focus on the question why Venus does not possess a significant global magnetic field and on what we can learn from this fact. Solutions of magnetohydrodynamic equations appropriate for the molten core of Venus are discussed. It is argued that, because the Elsasser number measuring the relative importance of Coriolis and Lorentz forces satisfies 1, equations for the problem of thermal convection in the Venusian fluid core must be nearly uncoupled with the dynamo equation. The existence of a global magnetic field, though small, then suggests that the size of the magnetic Reynolds numberR m must beR m =O(10), sustaining a dynamo action near its marginal state but not an active dynamo in the Venusian molten core. On the basis of asymptotic relations for finite amplitude convection, a useful constraint on important physical parameters for the liquid core of Venus is derived and discussed.  相似文献   

12.
The article presents a new tectonic scheme of Venus and gives the following interpretation of the planet's main structural units: (1) plains — areas of flood volcanism over stretched crust; (2) dome-like uplifts — areas of uplifting and volcanic activity above the mantle hot-spots; (3) coronae —former dome-like uplifts, partially subsided and diffused by gravity; (4) ridge belts — fold zones; (5) tesserae — fragments of ductile compression and shortening of crust; (6) supercoronae — coronae formed in the course of further evolution and relaxation of Beta-type uplifts. Ishtar Terra is considered to be a fragment of an ancient tessera paleocontinent, on the edge of which the Lakshmi supercorona is superimposed. Aphrodite Terra is considered as a belt of mantle hot-spot structures (dome-like uplifts, coronae, supercoronae, volcanoes, rifts).Three types of planetary belts have been distinguished on Venus: uplifted 'weakened' belts with an abundance of mantle hot-spot structures; a northern fan of ridge belts; and belts of low basalt plains. The center of the planetary system of uplifted weakened belts is situated in Atla Regio.The present tectonic structure of Venus is inferred to have formed during two stages of evolution characterized by different tectonic regimes. Stage I is a regime of soft ductile plates (formation of tessera uplifts and volcanic plains). Stage II is a formation of 'weakened' uplifted planetary belts, various tectonic regimes of mantle hot-spots, and plains-forming volcanism.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

13.
The intrablock deformation of Meshkenet Tessera on Venus is mostly due to responses of the uppermost surface bedrock to tensional stresses. It is found that complex deformation structures within the highland blocks resemble those of formed in chocolate tablet boudinaging which has taken place after original parallel faulting and bar-like crustal block formation. The high-angle tessera structures with varying cross-cutting relations define styles and locations of multiphase deformation most evidently related to local relaxation of tessera topography. Series of progressive or superposed fracturing events with alternating fault directions took place at high angles during this relaxational deformation. Compressional ridges often surround these tesserae.  相似文献   

14.
The geologic/morphologic map of the northern mid-to-high latitudes of Venus prepared by a Soviet science team on the basis of Venera 15/16 mission radar image coverage is analyzed and used to define six discrete assemblages of geologic/morphologic units that have well-defined geographic distributions. These assemblages have distinctive and differing geological and tectonic expressions and include: Plains Assemblage - which is dominated by lowland smooth plains and lowland rolling plains interpreted to be of volcanic origin, and a high concentration of small volcanic domes; Plains-Corona Assemblage - which is dominated by lowland smooth plains and lowland rolling plains interpreted to be of volcanic origin, at least ten coronae structures concentrated in the northern half of the region, and at least five large volcanoes, generally concentrated in the southern and western half of the region; Plains-Ridge Belt Assemblage - which is dominated by lowland smooth plains and lesser amounts of lowland rolling plains, major occurrences of ridge belts in a distinctive fan-shaped pattern, and very minor and patchy occurrences of tessera; Plains-Corona-Tessera Assemblage - which is dominated by approximately equal amounts of lowland smooth plains and lowland rolling plains, at least five coronae concentrated in the northern part of the region, a small number of large volcanoes, also in the northern part of the region, and numerous small patches of tesserae scattered throughout, and the highest abundance of small volcanic domes observed in the northern hemisphere; Tessera-Ridge Belt Assemblage — which is dominated by a few large areas (Fortuna, Laima, Tellus) and several smaller areas (Dekla, Meni) of tesserae, ridge belts generally arrayed in an angular and often orthogonal pattern different from the fan-shaped pattern of the Plains-Ridge Belt Assemblage, lowland rolling plains and lesser amounts of lowland smooth plains, and an upland rise (Bell Regio); Tessera-Mountain Belt Assemblage - which is centered on the two volcanoes Colette and Sacajawea in Lakshmi Planum, and characterized by the peripheral mountain belt/tessera pairs, with the tessera on the outboard side: Danu/Clotho (S), Akna/Atropos (W), Freyja/ltzpapalotl (N), and Maxwell/Fortuna (E).The distribution and characteristics of assemblages demonstrate that vertical and horizontal tectonic forces are operating on the crust and lithosphere of Venus in different ways in specific localized areas. Alternative models are outlined for the origin of each assemblage and the relationship between assemblages, and important unresolved questions are identified. A key to the further understanding of these assemblages is the origin of ridge belts and tessera terrain.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci., Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT. Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   

15.
The details of stratigraphic units and structures making up six coronae and their regional surroundings on Venus were examined using full resolution Magellan images and stereoscopic coverage. Altimetry and stereoscopic coverage were essential in establishing the local stratigraphic relationships and the timing of corona-related topography. The degree of preservation of signatures of earlier corona-related activities and the scale of later corona-related activities vary significantly from corona to corona. We compared the geologic sequence in each corona to regional and global stratigraphic units, placing the coronae in the broader context of the geologic history of Venus. The results of this study were compared with earlier analyses bringing the total number of corona considered to about 15% of the total corona population. We found that corona started forming soon after tessera formation and largely spanned a significant part of the subsequent geologic history of Venus, over about 200–400 million years. Topographic annulae were initiated in early post-tessera time but were largely completely formed by the time of emplacement of regional plains with wrinkle ridges. Some coronae ceased activity by this time, while others continued until closer to the present, although showing evidence of waning activity. Coronae-associated volcanism dominated many coronae during this later stage. Convincing evidence of pre-regional plains corona- related volcanism was not found in the population examined here. We conclude that coronae formed in a two stage process; the first stage (tectonic phase) involved the annular warping of early extensive stratigraphic units of volcanic origin and the second (volcanic phase) involved coronae-related lava flow activity and local fracturing. For the vast majority of coronae, the first tectonic phase was largely complete prior to the emplacement of the regional plains (Pwr, plains with wrinkle ridges). The vast majority of corona-related volcanic activity (emplacement of Pl, lobate flows) occurred subsequent to the emplacement of regional plains. We found no evidence of coronae initiation in substantially later periods of the observed history of Venus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
New radar images obtained from the Arecibo Observatory (resolution 1.5–4.0 km) for portions of the southern hemisphere of Venus show that: the upland of Phoebe Regio contains the southern extension of Devana Chasma, a rift zone extending 4200 km south from Theia Mons and interpreted as a zone of extension; Alpha Regio, the only large region of tessera within the imaged area, is similar to tessera mapped elsewhere on the planet and covers a smaller percentage of the surface than that observed in the northern high latitudes; the upland made of Ushas, Innini and Hathor Montes consists of three distinct volcanic constructs; Themis Regio is mapped as an ovoid chain of radar-bright arcuate single and double ring structures, edifices and bright lineaments. This area is interpreted as a region of mantle upwelling and on the basis of apparent split and separated features, a zone of localized faulting and extension. Linear zones of deformation in Lavinia Planitia are characterized by lineament belts that are often locally elevated, are similar to ridge belts mapped in the northern high latitudes and are interpreted to be characterized mainly by compression; radar-bright lava complexes within Lavinia Planitia are unique to this part of the planet and are interpreted to represent areas of eruption of high volumes of extremely fluid lava; the upland of Lada Terra is bound to the north by a linear deformation zone interpreted as extensional, is characterized by large ovoids and coronae, is interpreted to be associated with an area of mantle upwelling, and is in contrast to the northern high latitude highland of Ishtar Terra. Regions of plains in the southern hemisphere cover about 78%; of the mapped area and are interpreted to be volcanic in origin. Located within the area imaged (10–78 S) are 52 craters interpreted to be of impact origin ranging from 8 to 157 km in diameter. On the basis of an overall crater density of 0.94 craters/106 km2, it is determined that the age of this part of the Venus surface is similar to the 0.3 to 1.0 billion year age calculated for the equatorial region and northern high latitudes. The geologic characteristics of the portion of the Venus southern hemisphere imaged by Arecibo are generally similar to those mapped elsewhere on the planet. This part of the planet is characterized by widespread volcanic plains, large volcanic edifices, and zones of linear belt deformation. The southern hemisphere of Venus differs from northern high latitudes in that tessera makes up only a small percentage of the surface area and the ovoid chain in Themis Regio is unique to this part of the planet. On the basis of the analysis presented here, the southern hemisphere of Venus is interpreted to be characterized by regions of mantle upwelling on a variety of scales (ovoids, region made up of Ushas, Innini and Hathor Montes), upwelling and extension (Themis Regio) and localized compression (lineament belts in Lavinia Planitia).  相似文献   

17.
On the Venusian surface, there can be found a rather large population of structures with prominent radial features. The term “nova” or “astrum/astra” are used to describe this special group of volcanotectonic structures with a stellate fracture pattern radiating around a central summit or fracture. In this paper, we studied the distribution and characteristics of 74 novae to determine if there are suitable ways to categorize them and to find out how this categorization could explain the differences in nova characteristics. The nova locations establish that these structures are not distributed sporadically, but they display both latitudinal and longitudinal concentrations. In addition, it is evident that the geological environments represent the major differences between individual novae. Most of them, in general, are connected to some larger volcanotectonic unit. The differences in geological surroundings can be used as the basis for characterizing novae by dividing them into different categories: (a) novae located either within or close to a rather large deformation zone, (b) novae located on plains, (c) novae located close to tessera terrain, and (d) novae situated within volcanic areas either close to volcanoes or within an area with a high density of coronae. The analysis of this characterization establishes that geological environments are the main cause for divergent nova characteristics, i.e., differences in morphology, volcanism, and topography, which, on the other hand, are possible ways to classify novae. In particular, the morphological classification (Type I, novae with features radiating from the same point; Type II, radial structures radiating from a fissure or other linear structure; Type III, lava flows or fields covering radiant point area; Type IV, semiradial structures which do not radiate from a well-defined radiant point, fissure, or area) shows some correlations between geological environments and the type of nova, indicating that the morphological appearance and the location—and, thereby, the geologic environment—of the novae are correlated to some extent.  相似文献   

18.
Improved measurements of the target elevations of 885 impact craters on Venus indicate that they are nearly random with respect to elevation. Although a slight deficit of craters at high elevations and an excess at low elevations is observed, the differences are marginally significant. Using a high-resolution digital map and database of all major volcanic, tectonic and impact features, we examine the distribution of impacts within volcanic and tectonic features, and the distribution of volcanism and tectonism with elevation. We show that the observed crater hypsometry results from resurfacing at higher elevations by volcanic and tectonic features superimposed on less active plains.The distribution of impacts in the map units has two distinct patterns: (1) the plains and shield fields (70%) have high crater densities and low proportions of tectonized or embayed craters; and (2) the remaining volcanic and tectonic features (30%) have low crater densities and high proportions of modified craters. The plains and shield fields appear to represent a much lower level of resurfacing activity. Simple area-balance calculations indicate that resurfacing at higher elevations by tectonic and volcanic features plausibly explains the observed crater hypsometry. However, the subtlety of the effects suggests that either (1) little resurfacing has occurred during the period of crater accumulation, or (2) resurfacing acts almost equally at all elevations. The apparent low activity of the plains and their abundance at lower elevations makes it unlikely that resurfacing is balanced with respect to elevation. It appears that the plains have been mostly quiescent since their emplacement, and that subsequent resurfacing occurs mostly in the highlands as a result of volcanism, corona formation, and rifting. We estimate that since the end of plains emplacement about 14% of Venus has been resurfaced by volcanism and about 6% by tectonic deformation.  相似文献   

19.
The Taurus-Littrow region (Apollo 17 landing area) is located in the northeastern quadrant of the Moon in the mountainous area on the southeastern rim of the Serenitatis basin. The highlands in the Taurus-Littrow region can be divided into three broad terrain types. (1)Littrow massifs - massive, 10-20 km diam, steep-sloped (20°–30°), highland blocks often bordered by linear graben-like valleys. (2)Littrow sculptured hills - a series of closely spaced 1-5 km diam domical hills occupying broad highland plateaus which have been cratered and block faulted. Sculptured hill units stretch along the eastern edge of Serenitatis from the Apollo 17 area north to Posidonius. (3)Vitruvius front and plateau - a long irregular but generally north-trending scarp (occasionally rising over 2 km above the surrounding terrain) and its associated uplifted plateau to the east. This terrain is composed of hills ranging from 2-7 km diam, whose morphology is intermediate between the sculptured hills and the massifs. It is concluded that the highland units in the Taurus-Littrow region are primarily related to the origin of the Serenitatis basin because of their marked similarity to more well-preserved basin-related deposits in the younger Imbrium and Orientale basins: (1) the massifs and sculptured terra are morphologically similar to the Imbrium basin-related Montes Alpes and Alpes Formation, (2) the relative geographic position of the Taurus-Littrow highlands and Montes Alpes/Alpes Formation is the same, forming the second ring and spreading distally, and (3) the structures are similar in orientation and development (e.g., massifs are related to radial and concentric structure; Alpes Formation/sculptured terra are not). Interpretation of the massifs and sculptured hills as Serenitatis impact-related deposits lessens the possible role of highland volcanism in the origin and evolution of the Taurus-Littrow terrain, although extensive pre-Serenitatis volcanism cannot be ruled out. The preserved morphology of the sculptured hills suggests that the thickness of post-Serenitatis large basin ejecta (from Imbrium, for instance) is small, compared to the total highland section. This implies that the primary contributions to the highland stratigraphy are from Serenitatis and pre-Serenitatis events. The highland surface, however, may be dominated by ejecta from the latest nearby large event (formation of the Imbrium basin). Structural elements mapped in the Taurus-Littrow area include lineaments, the Vitruvius structural front, two types of grabens, and scarps. The majority of lineaments, as well as some grabens, appear to be related to a dominant NW trend and subordinate N and NE trends. These trends are interpreted to be related to a more regional lunar grid pattern which formed in the area prior to the origin of the Serenitatis basin, causing distinct structural inhomogeneities in the highland terrain. The Serenitatis event produced radial and concentric structures predominantly influenced by this pre-existing trend. Younger grabens are generally circumferential to the Serenitatis basin and appear to be related to readjustment of Serenitatis-produced structures; those that are oblique to Serenitatis follow the pre-Serenitatis structural grain. No obvious structural elements can be correlated with the post-Serenitatis, Nectaris and Crisium basins. It is believed that the origin and hence the geographic concentration of the Littrow massifs is related to the fact that Serenitatis radials in the massif area coincide with lines of pre-existing structural weakness along a general lunar grid direction (NW). Pre-existing structurally weak lunar grid trends seem to have been structurally reactivated by Serenitatis radials, causing preferential uplift of large blocks in this area. Elsewhere in the region radials would be oblique to this direction. Since Serenitatis and Imbrium radials coincide in the massif area, the post-Serenitatis Imbrium event may have reactivated Serenitatis radial fractures, possibly rejuvenating the massif terrain. The geologic and tectonic history of the Taurus-Littrow highlands began prior to the origin of Serenitatis in Tectonic Interval I. The strong NW trending structural elements are believed to have formed as part of a global stress pattern (possibly shear) sometime during this period of probable crustal formation and fragmentation. Tectonic Interval II was initiated by the origin of the Serenitatis basin. The basic topography and morphology of the region and most large grabens resulted from this event and their orientations show that they were controlled at least in part by the pre-existing grid. No other large basins forming during this interval appear to have had a major effect on the area. Tectonic Interval III is dominated by the formation of narrow grabens following structural patterns circumferential to the Serenitatis basin and tangential to it where they coincide with pre-existing grid directions. Serenitatis isostatic rebound or early mare fill may have produced this stress system. The scarp in the vicinity of the Apollo 17 landing site is the youngest obvious structural element.  相似文献   

20.
The possibility of observing Venusian fireballs from Earth is examined. We estimate the steady-state flux of large, fireball-producing meteoroids at the orbit of Venus, and find that the prospects for observing such events from Earth with small, amateur-sized telescopes are not unreasonable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号