首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高分辨率非线性三维整体反演方法是基于非线性理论,在层位控制下,将工区多井(或全部井)的测井数据与井旁地震道数据输入具有多输入多输出的网络,同时进行整体训练,可获得整个工区的自适应权函数,并建立综合非线性映射关系,并根据储层在纵横方向上的地质变化特征更新这种非线性映射关系,这样,就能对反演过程及其反演结果起到约束和控制的作用,从而获得稳定且分辨率高的地震反演剖面(速度反演剖面/波阻抗反演剖面/密度反演剖面),实现整体反演,该方法通过模型试算和实际资料处理,获得较好的地质效果,证明该方法精度高、实用性强,可用于储层的定量分析。  相似文献   

2.
Previous formulation for P-wave elastic impedance (EI) technology considers only first-order effects in isotropic reflectivity. In this paper, Wang's pseudo-quadratic approximation for PP-wave reflection (RPP) coefficients is used, in order to incorporate nonlinear effects into EI equation. In comparison with coefficients computed with the conventional linear approximation, Wang's pseudo-quadratic formula shows higher accuracy at far incidence. A further nonlinear component in the intermediate region of incidence is responsible for the high accuracy achieved with the pseudo-quadratic Rpp coefficient formula. By applying the same procedures of previous linear formulation to Wang's pseudo-quadratic Rpp coefficient, a second-order approach for EI equation is obtained. This novel approach is formed by multiplication of two terms. The first term represents the previous linear approach for EI equation. As for the second term, it is interpreted as the correction of first-order EI formula to second-order effects. As expected, specialization of the second-order EI equation to normal incidence results in the well-known acoustic impedance (AI). Assumption of invariability in fundamental elastic properties leads to simplification of mathematical procedures. However, high contrasts possibly found within the log window under investigation may corrupt the computation of EI logs by introducing numerical errors. Although two procedures are proposed to cope with numerical errors, modeling shows that the second-order approach for EI is robust enough to handle high contrasts in elastic parameters. Actual well logs are used to verify performance of the novel EI equation in reproducing the amplitude-versus-offset (AVO) response of a mature, oil-bearing sandstone resevoir. As a result, influence of nonlinear effects, which are incorporated into EI equation, is observed on amplitudes and on frequency bandwidth of synthetic seismograms generated at a high angle of incidence. Further experiments with actual well data focus on crossplotting EI logs against fundamental elastic parameters. In terms of accuracy, the outcomes reveal that lithofacies classification can benefit from using the elaboration of EI technology derived in this work.  相似文献   

3.
Shale volume estimation based on the factor analysis of well-logging data   总被引:1,自引:1,他引:0  
In the paper factor analysis is applied to well-logging data in order to extract petrophysical information about sedimentary structures. Statistical processing of well logs used in hydrocarbon exploration results in a factor log, which correlates with shale volume of the formations. The so-called factor index is defined analogously with natural gamma ray index for describing a linear relationship between one special factor and shale content. Then a general formula valid for a longer depth interval is introduced to express a nonlinear relationship between the above quantities. The method can be considered as an independent source of shale volume estimation, which exploits information inherent in all types of well logs being sensitive to the presence of shale. For demonstration, two wellbore data sets originated from different areas of the Pannonian Basin of Central Europe are processed, after which the shale volume is computed and compared to estimations coming from independent inverse modeling.  相似文献   

4.
A rigorous and practical approach for interpretation of impeller flow log data to determine vertical variations in hydraulic conductivity is presented and applied to two well logs from a Chalk aquifer in England. Impeller flow logging involves measuring vertical flow speed in a pumped well and using changes in flow with depth to infer the locations and magnitudes of inflows into the well. However, the measured flow logs are typically noisy, which leads to spurious hydraulic conductivity values where simplistic interpretation approaches are applied. In this study, a new method for interpretation is presented, which first defines a series of physical models for hydraulic conductivity variation with depth and then fits the models to the data, using a regression technique. Some of the models will be rejected as they are physically unrealistic. The best model is then selected from the remaining models using a maximum likelihood approach. This balances model complexity against fit, for example, using Akaike's Information Criterion.  相似文献   

5.
This paper presents an empirical relationship of quantitatively linked electromagnetic (EM) borehole recordings of the total dissolved solids (TDS) in pore water in the Quaternary deposits of the Belgian coastal plain. First, the long normal (LN) logs are linked to EM logs, then the already developed relationships between LN resistivity measurements and the TDS values are rewritten for EM recordings. The main parameter in these equations is the formation factor, which is derived from ground water analyses and LN logs through Archie's law. The EM recording has several advantages compared to the LN logs. The EM analysis allows measuring in PVC-cased wells and is not hindered by the invasion zone around the well. Furthermore, it has a high vertical resolution. LN logs can be measured only once, after drilling a well; EM recordings can be repeated several times in monitoring wells, which allows the gathering of time-dependent data over a complete vertical cross section. Such data could be obtained with LN logs only in wells with screens over the full-depth interval, which causes a hydraulic short circuit. This short circuit can result in a large artificial flow through the well between different levels, resulting in a salinity profile, which is no longer representative for the studied site. Remediation against short circuiting is a reduction of the screened interval, which strongly reduces the gathered information. The application of the derived equations is one of setting up a monitoring network along the Belgian coast to monitor the trend in salinity levels and comparing present salinity levels with older LN recordings to investigate the salinity changes in the last 30 years. Deep wells already present in the Belgiancoastal plain can then be used to monitor both the fresh water head changes and the salt water evolution. The technique has also been used for parameter identification for which real concentration measurements were needed.  相似文献   

6.
The vertical transport of contaminants from source areas is employed in many risk assessment models and screening tools in order to estimate the contaminant mass discharge (CMD) into underlying aquifers. The key parameters for estimating CMD are the contaminant source area and concentration, and the vertical water flux, the latter of which depends on the vertical hydraulic conductivity and the vertical hydraulic gradient in the subsurface. This study focuses on advancing the use of the combined membrane interface probe hydraulic profiling tool (MiHPT) to investigate the vertical hydraulic gradient across a clay till overlying a sandy aquifer at a contaminated site in Denmark. Only the HPT is necessary for the estimate of vertical hydraulic gradient. The hydraulic head, clay till thickness, and resulting vertical hydraulic gradients found using the MiHPT compared well with observations from nearby nested wells. The parameter with the largest discrepancy was the thickness of the clay till. The advantage of the MiHPT is its relatively quick depth discrete access to information regarding subsurface permeability, vertical hydraulic gradients and contaminant distribution across a site. In this case study, performance of additional dissipationtests during the HPT log to acquire determination of the vertical hydraulic gradient increased the cost by 3% compared to standard HPT logs.  相似文献   

7.
Seismic exploration underneath highly heterogeneous layers such as basalt flows is possible by lowering the principal source frequency. Unfortunately this also reduces resolution. Wave‐localization theory is a multiple scattering theory that can be used to study stratigraphic filtering in chaotic lithologies. It predicts the apparent attenuation due to scattering of a plane wave traversing a layer with high velocity fluctuations. It can therefore predict the optimum principle source frequency in the trade‐off between loss of resolution and increased penetration depth. We show how this can be done with the help of a few statistical parameters derived from a well‐log analysis; namely, the average background velocity, the expected standard deviation in the velocity fluctuations, the typical scale length of the heterogeneities and the thickness of the basalt layer. In the likely situation that no local well logs exist, a multitude of scenarios can easily be examined at low cost.  相似文献   

8.
Dipole sonic logs acquired in near‐vertical pilot wells and over the build section of nearby horizontal production wells are inverted to determine the five elastic constants characterizing a transversely isotropic formation, under the assumption of lateral homogeneity. Slowness values from a single depth in the vertical well are combined with data from the corresponding depth in the deviated well; these data are then inverted using nonlinear optimization to derive the five elastic constants. The technique is demonstrated on data from the Haynesville Shale in Texas. Estimates of the anisotropy are in line with a priori expectations; the Thomsen ε and γ parameters are well correlated and generally possess positive anellipticity, with Thomsen's ε greater than Thomsen's δ.  相似文献   

9.
Accurate quantification of in situ heterogeneity and flow processes through fractured geologic media remains elusive for hydrogeologists due to the complexity in fracture characterization and its multiscale behavior. In this research, we demonstrated the efficacy of tracer-electrical resistivity tomography (ERT) experiments combined with numerical simulations to characterize heterogeneity and delineate preferential flow paths in a fractured granite aquifer. A series of natural gradient saline tracer experiments were conducted from a depth window of 18 to 22 m in an injection well (IW) located inside the Indian Institute of Technology Hyderabad campus. Tracer migration was monitored in a time-lapse mode using two cross-sectional surface ERT profiles placed in the direction of flow gradient. ERT data quality was improved by considering stacking, reciprocal measurements, resolution indicators, and geophysical logs. Dynamic changes in subsurface electrical properties inferred via resistivity anomalies were used to highlight preferential flow paths of the study area. Temporal changes in electrical resistivity and tracer concentration were monitored along the vertical in an observation well located at 48 m to the east of the IW. ERT-derived tracer breakthrough curves were in agreement with geochemical sample measurements. Fracture geometry and hydraulic properties derived from ERT and pumping tests were further used to evaluate two mathematical conceptualizations that are relevant to fractured aquifers. Results of numerical analysis conclude that dual continuum model that combines matrix and fracture systems through a flow exchange term has outperformed equivalent continuum model in reproducing tracer concentrations at the monitoring wells (evident by a decrease in RMSE from 199 to 65 mg/L). A sensitivity analysis on model simulations conclude that spatial variability in hydraulic conductivity, local-scale dispersion, and flow exchange at fracture-matrix interface have a profound effect on model simulations.  相似文献   

10.
The analysis of well logging data plays key role in the exploration and development of hydrocarbon reservoirs. Various well log parameters such as porosity, gamma ray, density, transit time and resistivity, help in classification of strata and estimation of the physical, electrical and acoustical properties of the subsurface lithology. Strong and conspicuous changes in some of the log parameters associated with any particular geological stratigraphy formation are function of its composition, physical properties that help in classification. However some substrata show moderate values in respective log parameters and make difficult to identify the kind of strata, if we go by the standard variability ranges of any log parameters and visual inspection. The complexity increases further with more number of sensors involved. An attempt is made to identify the kinds of stratigraphy from well logs over Prydz bay basin, East Antarctica using fuzzy inference system. A model is built based on few data sets of known stratigraphy and further the network model is used as test model to infer the lithology of a borehole from their geophysical logs, not used in simulation. Initially the fuzzy based algorithm is trained, validated and tested on well log data and finally identifies the formation lithology of a hydrocarbon reservoir system of study area. The effectiveness of this technique is demonstrated by the analysis of the results for actual lithologs and coring data of ODP Leg 188. The fuzzy results show that the training performance equals to 82.95% while the prediction ability is 87.69%. The fuzzy results are very encouraging and the model is able to decipher even thin layer seams and other strata from geophysical logs. The result provides the significant sand formation of depth range 316.0- 341.0 m, where core recovery is incomplete.  相似文献   

11.
水平井测井解释技术综述   总被引:31,自引:6,他引:25       下载免费PDF全文
水平井的大规模钻井和应用是二十世纪后期石油工业的一个亮点.水平井技术在新油田开发和老油田调整挖潜上成效显著,它可降低勘探开发成本、大幅度提高油气单井产能和采收率等.回顾了水平井及水平井测井解释发展历史,比较了垂直井和水平井测井及解释评价上的异同,分析了水平井测井环境以及测井解释所面临的问题,简述了一些水平井测井数据处理方法及综合解释中应注意的问题,最后根据我国目前的水平井测井解释现状分析了存在的问题,提出了今后发展的思路:以跟踪国外和创新发展国内水平井解释技术为目标,开展复杂条件下各种测井方法的正反演研究,研究各种环境影响因素的校正方法,注意多学科的交叉综合,结合垂直井测井解释经验和水平井测井的特点提高水平井测井解释水平.  相似文献   

12.
Based on a detailed analysis of differences between seismic data and well logs, we discuss the problem of matching seismic traces and well logs and present a new matching method based on event search in instantaneous phase which greatly improves seismic resolution. The method is based on flattening events in instantaneous phase to compare the seismic traces to the well log traces with the same phase. We calculate the coefficients using the singular value decomposition method to extrapolate the well logs. As a result, the events in the seismic profile are continuous and match well with well logs. We apply this method to the Mao-2 well in Daqing Oilfield with good results.  相似文献   

13.
Differences between traveltimes from sonic to seismic frequencies, commonly known as drift, can be attributed to a combination of multiple scattering and absorption. The portion due to scattering can be estimated directly by calculating synthetic seismograms from sonic logs. A simple alternative approach is suggested by the long-wave equivalent averaging formulae for the effective elastic properties of a stack of thin layers, which gives the same traveltime delays as the low-frequency limit of the scattering dispersion. We consider the application of these averaging formulae over a frequency-dependent window with the hope of extending their use to frequencies higher than those allowed by the original validity conditions. However, comparison of the time delay due to window-averaging with the scattering dispersion predicted by the O'Doherty-Anstey formula reveals that it is not possible to specify a form of window that will fit the dispersion across the spectrum for arbitrary log statistics. A window with a width proportional to the wavelength squared matches the behaviour at the low-frequency end of the dispersive range for most logs, and allows an almost exact match of the drift across the entire spectrum for exponential correlation functions. We examine a real log, taken from a hole in nearly plane-layered geology, which displays strong quasi-cyclical variations on one scale as well as more random, smaller-scale fluctuations. The details of its drift behaviour are studied using simple models of the gross features. The form of window which gave a good theoretical fit to the dispersion for an exponential log correlation function can only fit the computed drift at high or low frequencies, confirming that there are at least two significant scale-lengths of fluctuation. A better overall fit is obtained for a window whose width is proportional to the wavelength. The calculated scattering drift is significantly less than that observed from a vertical seismic profile, but the difference cannot be wholly ascribed to absorption. This is because the source frequency of the sonic tool is not appropriate for its resolution (receiver spacing) so that the scattering drift from sonic to seismic frequencies cannot be fully estimated from the layer model derived from the log.  相似文献   

14.
Electrical conductivity (EC) logs were obtained by both open‐borehole logging and passive multilevel sampling (MLS) in an observation borehole penetrating the Coastal Aquifer in Tel Aviv, Israel. Homogeneous vertical velocities for a 70‐m thick subaquifer were approximated from each profile using a steady‐state advection‐diffusion model. The open‐borehole log led to an overestimation of the steady‐state upward advective flux of deep brines (vertical velocity of 0.95 cm/yr as compared to 0.07 cm/yr for the MLS profile). The combination of depth‐dependent data and the suggested simple modeling approach comprises a method for assessing the vertical location of salinity sources and the nature of salt transport from them (i.e., advective vs. diffusive). However, in this case, the easily obtained open‐borehole logs should not be used for collecting depth‐dependent data.  相似文献   

15.
傅红笋  曹莉  韩波 《地球物理学报》2012,55(9):3173-3179
测井数据和地震数据是地震勘探中两种最重要的资料. 测井约束地震波形反演是在非线性波形反演的基础上,利用已知测井资料详细的垂直分辨能力和地震资料均匀密集的水平采样特点, 通过迭代反演来求取一个具有较高分辨率的速度参数.本文建立了测井约束反演模型,研究了测井约束下地震波形反演的同伦摄动求解方法.同伦摄动法作为一种新的、求解数学物理中各种非线性问题的有效方法,具有计算速度快、计算精度高的优点.这对于提高反演的精度和效率是十分有益的. 为了表征该方法的有效性和稳定性,分别对水平层状介质模型和逆冲断层带模型进行了数值模拟,并与Landweber迭代法相对比,结果表明该算法具有更好的收敛性,能够取得更为满意的反演效果.  相似文献   

16.
Estimating thermal conductivity from core and well log data   总被引:1,自引:1,他引:0  
The aim of the presented work was to introduce a method of estimating thermal conductivity using well log data. Many petrophysical properties of rocks can be determined both by laboratory measurements and well-logs. It is thus possible to apply geophysical data to empirical models based on relationships between laboratory measured parameters and derive continuous thermal conductivity values in well profiles. Laboratory measurements were conducted on 62 core samples of Meso-Paleozoic rocks from the Carpathian Foredeep. Mathematical models were derived using multiple regression and neural network methods. Geophysical data from a set of seven well logs: density, sonic, neutron, gamma ray, spectral gamma ray, caliper and resistivity were applied to the obtained models. Continuous thermal conductivity values were derived in three well profiles. Analysis of the obtained results shows good consistence between laboratory data and values predicted from well log data.  相似文献   

17.
Many sedimentary basins throughout the world exhibit areas with abnormal pore-fluid pressures (higher or lower than normal or hydrostatic pressure). Predicting pore pressure and other parameters (depth, extension, magnitude, etc.) in such areas are challenging tasks. The compressional acoustic (sonic) log (DT) is often used as a predictor because it responds to changes in porosity or compaction produced by abnormal pore-fluid pressures. Unfortunately, the sonic log is not commonly recorded in most oil and/or gas wells. We propose using an artificial neural network to synthesize sonic logs by identifying the mathematical dependency between DT and the commonly available logs, such as normalized gamma ray (GR) and deep resistivity logs (REID). The artificial neural network process can be divided into three steps: (1) Supervised training of the neural network; (2) confirmation and validation of the model by blind-testing the results in wells that contain both the predictor (GR, REID) and the target values (DT) used in the supervised training; and 3) applying the predictive model to all wells containing the required predictor data and verifying the accuracy of the synthetic DT data by comparing the back-predicted synthetic predictor curves (GRNN, REIDNN) to the recorded predictor curves used in training (GR, REID). Artificial neural networks offer significant advantages over traditional deterministic methods. They do not require a precise mathematical model equation that describes the dependency between the predictor values and the target values and, unlike linear regression techniques, neural network methods do not overpredict mean values and thereby preserve original data variability. One of their most important advantages is that their predictions can be validated and confirmed through back-prediction of the input data. This procedure was applied to predict the presence of overpressured zones in the Anadarko Basin, Oklahoma. The results are promising and encouraging.  相似文献   

18.
In this paper, we demonstrate the high-resolution seismic reflection data for a depth range of several hundred meters across the Fenhe fault in Taiyuan city, China. In combination with the relevant borehole logs, these data provide useful constraints on the accurate position, geometry and deformation rate of the fault, as well as the kinematics of recent fault motion. The highresolution seismic reflection profiling revealed that the western branch of the Fenhe fault is a high angle, eastward dipping, oblique-normal fault, and cutting up to the lower part of the Quaternary system. It was revealed that the top breaking point of this fault is at a depth of~70m below the ground surface. A borehole log across the Fenhe fault permitted us to infer that there are two high-angle, oppositely dipping, oblique-normal faults. The eastern branch lies beneath the eastern embankment of the Fenhe river, dipping to the west and cutting into the Holocene-late Pleistocene strata with a maximum vertical offset of~8m. Another borehole log across the northern segment of the Fen]he fault indicates that the western branch of this fault has cut into the Holocene-late Pleistocene strata with a maximum vertical offset of~6m. The above-mentioned data provide a minimum average Pieistocene-Holocene vertical slip rate of 0.06~0.08mm/a and a maximum average large-earthquake recurrence interval of 5.0~6.7ka for the Fenhe fault.  相似文献   

19.
Using the concept of reciprocity and the known solution for the electric field of a vertical oscillating magnetic dipole source placed over a two-layered halfspace, an integral expression for the vertical magnetic field produced by a horizontal rectangular loop, carrying an oscillating current and placed on the surface of the same halfspace, is deduced. This expression is such that it can be evaluated by a combination of straightforward numerical integration and digital linear filter techniques. Displacement currents everywhere in space are neglected. Fields both inside and outside the loop are presented as sounding curves. A little over a decade of frequencies (100–3000 Hz) appears to be the minimum requirement and two decades (100–10000 Hz) are sufficient for most situations. Parametric and geometric sounding curves both show good resolution of subsurface layering. Phase shows better resolution than amplitude. Similarly, resolution is higher when conductivity increases with depth than when it decreases. Besides being useful for the electromagnetic depth sounding for layered earth structures, such computations can be applied to determine normal corrections to Turam observations, whenever a rectangular loop of finite size is used as a transmitter.  相似文献   

20.
多属性融合技术在苏14井区的应用   总被引:2,自引:1,他引:1  
In this study area the geological conditions are complicated and the effective sandstone is very heterogeneous. The sandstones are thin and lateral and vertical variations are large. We introduce multi-attribute fusion technology based on pre-stack seismic data, pre-stack P- and S-wave inversion results, and post-stack attributes. This method not only can keep the fluid information contained in pre-stack seismic data but also make use of the high SNR characteristics of post-stack data. First, we use a one-step recursive method to get the optimal attribute combination from a number of attributes. Second, we use a probabilistic neural network method to train the nonlinear relationship between log curves and seismic attributes and then use the trained samples to find the natural gamma ray distribution in the Su-14 well block and improve the resolution of seismic data. Finally, we predict the effective reservoir distribution in the Su-14 well block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号