首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a solar dynamo mechanism that generates large-scale magnetic fields due to the combined action of cyclonic flows (the α effect), differential rotation (the Θ effect), and the non-uniformity of large-scale magnetic fields (the Θ × J effect). Our results are based on numerical model which takes into account currently available data on the differential rotation of the convection zone and the intensity of convective flows in the solar interior. A reasonable choice of parameters characterizing the intensity of magnetic-field generation by the α and Θ × J mechanisms can account for an oscillatory dynamo regime with properties similar to the 22-year magnetic-activity cycle of the Sun. We analyze the nonlinear saturation of the generation effects in the large-scale magnetic field, due to either magnetic stresses or the conservation of magnetic helicity. Allowance for the helicity of the small-scale magnetic fields is of crucial importance in limiting the energy of the generated large-scale magnetic field.  相似文献   

2.
The sequence of events determining the initial stages of star formation is analyzed in framework of the self-enrichment scenario. The computations are based on a single-zone chemo-dynamical model. It is shown that the first episode of star formation was characterized by an initial mass function shifted toward massive stars (M ≥ 8M). We argue that the transition to a star formation with a normal (Salpeter) initial mass function was due to more efficient radiative cooling of the proto-globular cluster gas after its enrichment to a metallicity of Z ~ 0.02 Z in agreement with those observed in globular clusters.  相似文献   

3.
The results of hydrodynamical calculations of radially pulsating helium stars with masses 0.5MM≤0.9M, bolometric luminosities 600L≤5×103L, and effective temperatures 1.5×104 K≤Teff≤3.5×104 K are presented. The pulsation instability of these stars is due to the effects of ionization of iron-group elements in layers with temperatures T~2×105 K. The calculations were carried out using opacities for the relative mass abundances of hydrogen and heavy elements X=0 and Z=0.01, 0.015, and 0.02. Approximate formulas for the pulsation constant Q over the entire range of pulsation instability of the hot helium stars in terms of the mass M, radius R, effective temperature Teff, and heavy-element abundance Z are derived. The instability of BX Cir to radial pulsations with the observed period Π=0.1066 d occurs only for a mass M≥0.55M, effective temperature Teff≥23000 K, and heavy-element abundance Z≥0.015. The allowed mass of BX Cir is in the range 0.55MM≤0.8M, which corresponds to luminosities 800LM≤1400L and mean radii 1.7R?R?2.1R.  相似文献   

4.
The components U0 and V0 of the solar motion and the Oort constant A0 are determined using the data of a homogeneous open-cluster catalog with corrected distance moduli. The results are based on a sample of 146 open clusters with known radial velocities located in the Galactic plane (b<7°) within 4 kpc of the Sun. The solar Galactocentric distance R0 is determined using two kinematic methods. The following results are obtained: A0=17.0±0.9 km/s kpc, U0=10.5±1.0 km/s, V0=11.5±1.1 km/s, R0=8.3±0.3 pc.  相似文献   

5.
Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length (Z 0/H) and shear velocity ratio (R) were analyzed as a function of roughness density (λ). Experiments showed that Z 0/H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/H and R showed little change with λ value beyond as λ max.  相似文献   

6.
We have used spectrograms taken with a dispersion of 8–12 Å per mm and Kurucz model atmospheres to study the supergiant 89 Her (F2Ibe).We find the effective temperature and gravity T eff = 6300 ± 150 K and log g = 0.5 ± 0.2. We have analyzed the microturbulence in the star’s atmosphere based on FeI, FeII, and TiII lines, deriving ξ t = 7.0 ± 0.5 km/s for the FeI and TiII lines and ξ t = 8.0 ± 0.5 km/s for the FeII lines. Abundances were determined for 23 elements. The elemental abundances in the atmosphere of 89 Her show deficiencies compared to the solar chemical composition, except for sodium, which is overabundant relative to the Sun.  相似文献   

7.
Nutrient sources of San Quintin Bay, a coastal lagoon affected by coastal upwelling off Baja California (Mexico), were traced using generalized additive (mixed) models (GAMM) to the stable nitrogen isotopic composition, C:N and N content of two co-occurring macrophytes (the macroalgae Ulva spp. and the seagrass Zostera marina). The geochemical tracers followed a spatial trend that partly responded to the long-term nutrient gradient from the ocean towards the interior of the bay. N content in Z. marina and Ulva spp. decreased linearly (while C:N increased) towards the middle section of the bay to concentration levels that indicate potential N limitation for growth. Concurrently midway into the bay (6–9 km), the δ15N of both macrophytes showed a gradual enrichment in 15N reflecting progressive denitrification. The spatial pattern of δ15N and the decrease in C:N of the macrophytes towards the innermost section of the bay indicated an additional nonoceanic source of dissolved nitrogen in this zone. The similarity of the δ15N pattern of Z. marina and Ulva spp. implies that their δ15N composition is mainly controlled by the availability of N, in spite of the physiological differences between taxa. A better fit of GAMM to N content and C:N was obtained for Z. marina than for Ulva spp. indicating that the former delineate more steadily and smoothly the influence of upwelling along the spatial gradient. Nonetheless, Ulva spp. may be analyzed in combination with Z. marina to characterize the environmental conditions at the time of sampling.  相似文献   

8.
Seagrass populations have been declining globally, with changes attributed to anthropogenic stresses and, more recently, negative effects of global climate change. We examined the distribution of Zostera marina (eelgrass) dominated beds in the York River, Chesapeake Bay, VA over an 8-year time period. Using a temperature-dependent light model, declines in upriver areas were associated with higher light attenuation, resulting in lower light availability relative to compensating light requirements of Z. marina compared with downriver areas. An inverse relationship was observed between SAV growth and temperature with a change between net bed cover increases and decreases for the period of 2004–2011 observed at approximately 23 °C. Z. marina-dominated beds in the lower river have been recovering from a die-off event in 2005 and experienced another near complete decline in 2010, losing an average of 97 % of coverage of Z. marina from June to October. These 2010 declines were attributed to an early summer heat event in which daily mean water temperatures increased from 25 to 30 °C over a 2-week time period, considerably higher than previous years when complete die-offs were not observed. Z. marina recovery from this event was minimal, while Ruppia maritima (widgeongrass) expanded its abundance. Water temperatures are projected to continue to increase in the Chesapeake Bay and elsewhere. These results suggest that short-term exposures to rapidly increasing temperatures by 4–5 °C above normal during summer months can result in widespread diebacks that may lead to Z. marina extirpation from historically vegetated areas, with the potential replacement by other species.  相似文献   

9.
The aim of this study is to present a statistics-based Lagrangian nowcasting model to predict intense rainfall convective events based on dual polarization radar parameters. The data employed in this study are from X-band radar collected during the CHUVA-Vale campaign from November 2011 to March 2012 in southeast Brazil. The model was designed to catch the important physical characteristics of storms, such as the presence of supercooled water above 0 °C isotherm, vertical ice crystals in high levels, graupel development in the mixed-phase layer and storm vertical growth, using polarimetric radar in the mixed-phase layer. These parameters are based on different polarimetric radar quantities in the mixed phase, such as negative differential reflectivity (Z DR) and specific differential phase (K DP), low correlation coefficient (ρ hv) and high reflectivity Z h values. Storms were tracked to allow the Lagrangian temporal derivation. The model is based on the estimation of the proportion of radar echo volume in the mixed phase that is likely to be associated with intense storm hydrometeors. Thirteen parameters are used in this probabilistic nowcasting model, which is able to predict the potential for future storm development. The model distinguishes two different categories of storms, intense and non-intense rain cell events by determining how many parameters reach the “intense” storm threshold.  相似文献   

10.
Comparisons of the brightness distributions of the white corona observed at distances of several solar radii with solar wind velocities derived from interplanetary-scintillation observations, as well as analyses of solar wind data obtained on spacecraft from December 1994 to June 1995, indicate that the fast solar wind can contain plasma with velocities V ≈ 300–450 km/s, approaching those typical for the slow solar wind that flows in the streamer belt and chains of streamers. At the same time, certain other parameters, first and foremost the plasma density N and ratio T/N 0.5 (where T is the temperature), indicate that these two flows differ considerably. The slow solar wind flowing in the streamer belt and chains displays high densities N > 10 ± 2 cm?3 and low T/N 0.5 < 1.7 × 104 K cm3/2 at the Earth’s orbit. The number of slow solar-wind sources observed in chains can be comparable with the number observed in the belt. The fast solar wind flowing from coronal holes always displays low densities N≤ 8 cm?3 and high T/N 0.5 > 1.7 × 104 K cm3/2. These properties probably indicate different origins of the fast and slow solar winds.  相似文献   

11.
Because of economic and technical limitations, measuring solar energy received at ground level (R s ) isn’t possible in all parts of the country, and in only 12% of synoptic stations is this parameter measured and recorded. Thus, it should be estimated and modeled spatially based on other climatic variables using mathematical methods. In this research, many attempts have been made to introduce an air temperature-based model for Rs estimation, and then, based on the output of the mentioned models, several geostatistical methods have been tested, and finally an elegant spatial model is proposed for (Rs) zoning in Iran. In this regard, the relationships between the measured amounts of monthly solar radiation and other climatic parameters, such as a monthly average, maximum and minimum temperature, precipitation, relative humidity, and the number of sunny hours during the period 1970–2010, are examined and modeled. It was revealed that based on the linear relationship between the monthly average air temperatures and solar radiation values recorded in each of the stations, that the best-fit linear model, with R 2  = 0.822, MAE = 1.81, RMSE = 2.51%, and MAPE = 10.08, can be introduced for Rs estimation. Then, using the outputs of the proposed model, the amounts of (R s ) are estimated in another 171 meteorological stations (a total of 192 stations), and eight geostatistical methods (IDW, GPI, RBF, LPI, OK, SK, UK, and EBK) were investigated for zoning. Comparing the resulting variograms showed that in addition to proof of spatial correlation between solar radiation data, they can be applied for modeling changes in various directions. Analyzing the ratio of the nugget effect on the roof of the variograms showed that the Gaussian model with the lowest ratio (Co/Co + C = 0.883) and (R 2  = 0.972), could model the highest correlation between the data and, therefore, it was used for data interpolation. To select the best geostatistical model, R2, MAE, and RMSE were used. On this basis, it was found that the RBF method with R 2  = 0.904, MAE = 3.02, RMSE = 0.39% is the most effective. Also, the IDW method with R 2  = 0.90, MAE = 3.08, RMSE = 0.391%, compared to other methods is the most effective. In addition, for data validation, correlations between observed and estimated values of solar radiation were studied and found R 2  = 0.86.  相似文献   

12.
Observations of the K2 continuation of Kepler Space Telescope program are used to estimate the spot coverage S (the fractional spotted area on the surface of an active star) for stars of the Pleiades cluster. The analysis is based on data on photometric variations of 759 confirmed clustermembers, together with their atmospheric parameters, masses, and rotation periods. The relationship between the activity (S) of these Pleiades stars and their effective temperatures shows considerable change in S for stars with temperatures T eff less than 6100 K (this can be considered the limiting value for which spot formation activity begins) and a monotonic increase in S for cooler objects (a change in the slope for stars with Teff ~ 3700 K). The scatter in this parameter ΔS about its mean dependence on the (V ?Ks)0 color index remains approximately the same over the entire (V?K s )0 range, including cool, fully convective dwarfs. The computated S values do not indicate differences between slowly rotating and rapidly rotating stars with color indices 1.1 < (V?K s )0 < 3.7. The main results of this study include measurements of the activity of a large number of stars having the same age (759 members of the Pleiades cluster), resulting in the first determination of the relationship between the spot-forming activity and masses of stars. For 27 stars with masses differing from the solarmass by nomore than 0.1M⊙, themean spot coverage is S = 0.031±0.003, suggesting that the activity of candidate young Suns is more pronounced than that of the present-day Sun. These stars rotate considerably faster than the Sun, with an average rotation period of 4.3d. The results of this study of cool, low-mass dwarfs of the Pleiades cluster are compared to results from an earlier study of 1570 M stars.  相似文献   

13.
For many years, information on the solar mean magnetic field (SMMF) of the Sun—an important heliophysical and astrophysical parameter—was restricted to magnetographic measurements in only one spectral line, FeI λ525.02 nm. More informative observations of the Stokes-meter parameters of the SMMF were first initiated on a regular basis at the Sayan Solar Observatory. The availability of I and V data obtained simultaneously in several spectral lines has made it possible to study fundamentally new physical problems. In this paper, based on a comparison of SMMF observations in several spectral lines, we find high correlations in the data and important systematic differences in the magnetic-field strength B, which we interpret as a manifestation of kilogauss magnetic fields in fine-structure magnetic elements. Results of theoretical modeling of the SMMF strength ratios for the FeI λ525.02 nm-FeI λ524.70 nm and FeI λ630.15 nm-FeI λ630.25 nm lines are presented. The asymmetries of the V profiles of four lines near the FeI λ525.02 nm line are examined; these lines are important diagnostics for studies of small-scale dynamical processes. The Sayan Solar Observatory SMMF measurements are in good consistency with the Wilcox Solar Observatory data for 2003: for a comparison of N = 137 pairs of points in the two data sets, the correlation coefficient ρ is 0.92 for the linear regression between the datasets BWSO = 0.03(±0.05) + 0.93(±0.03)BSSO.  相似文献   

14.
The results of several sets of measurements of the frequency of radio signals during coronal-sounding experiments carried out from 1991 to 2000 using the ULYSSES and GALILEO spacecraft are presented and analyzed. The S-band signals (carrier frequency f = 2295 MHz) were received at the three 70-m widely spaced ground stations of the NASA Deep Space Network. As a rule, the frequency-fluctuation spectra at frequencies above 1 mHz are power-laws. At small heliocentric distances, R < 10R (R is the solar radius), the spectral index is close to zero; this corresponds to a spectral index for the one-dimensional turbulence spectrum p1 = 1. The index of the frequency-fluctuation spectra in the region of the supersonic solar wind at distances R > 30 R is between 0.5 and 0.7 (p1 = 1.5–1.7). The results demonstrate a substantial difference between the turbulence regimes in these regions: in the region of the established solar wind, the power-law spectra are determined by nonlinear cascade processes that pump energy from the outer turbulence scale to the small-scale part of the spectrum, whereas such cascade processes are absent in the solar wind acceleration region. Near the solar minimum, the change in the turbulence regime of the fast, high-latitude solar wind occurs at greater distances than for the slow, low-latitude solar wind. Spectra with a sharp cutoff at high frequencies have been detected for the first time. Such spectra are observed only at R < 10 R and at sufficiently low levels of the electron density fluctuations. The measured cutoff frequencies are between 10 and 30 mHz; the cutoff frequency tends to increase with heliocentric distance. The variance of the plasma-density fluctuations has been estimated for the slow, low-latitude solar wind. These estimates suggest that the relative fluctuation level at distances 7 R < R < 30 R does not depend on heliocentric distance. The cross correlation of the frequency fluctuations recorded at widely spaced ground stations increases with the index of the frequency-fluctuation spectrum. At distances R ≈ 10 R, the rate of temporal changes in irregularities on the scale of several thousand kilometers is less than or comparable to the solar wind velocity.  相似文献   

15.
Particles can be accelerated to ultrahigh energies E≈1021 eV in moderate Seyfert nuclei. This acceleration occurs in shock fronts in relativistic jets. The maximum energy and chemical composition of the accelerated particles depend on the magnetic field in the jet, which is not well known; fields in the range ~5–1000 G are considered in the model. The highest energies of E≈1021 eV are acquired by Fe nuclei when the field in the jet is B≈16 G. When B~(5–40) G, nuclei with Z<10 are accelerated to E≤1020 eV, while nuclei with Z≥10 acquire energies E≥2×1020 eV. Only particles with Z≥23 acquire energies E≤1020 eV when B~1000 G. Protons are accelerated to E<4×1019 eV, and do not fall into the range of energies of interest for any magnetic field B. The particles lose a negligible amount of their energy in interactions with infrared photons in the accretion disk; losses in the thick gas-dust torus are also negligible if the luminosity of the galaxy is L≤1046 erg/s and the angle between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the axial ratio of the galactic disk is comparatively high. The particles do not lose energy to curvature radiation if their deviations from the jet axis do not exceed 0.03–0.04 pc at distances from the center of R≈40–50 pc. Synchrotron losses are small, since the magnetic field frozen in the galactic wind at R≤40–50 pc is directed (as in the jet) primarily in the direction of motion. If the model considered is valid, the detected cosmic-ray protons could be either fragments of Seyfert nuclei or be accelerated in other sources. The jet magnetic fields can be estimated both from direct astronomical observations and from the energy spectrum and chemical composition of cosmic rays.  相似文献   

16.
Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima are interpreted as the effects of changes in the general topology of the global solar magnetic field. The streamer axis is located on the neutral surface of the radial magnetic field B r = 0, and the neutral surfaces deviate toward the field null points. The magnetic configuration with a null point (line) located at the equator is typical for the solar minima, while the null points are located on the rotational axis of the Sun at the solar maxima.  相似文献   

17.
We have determined the main parameters of the old precataclysmic variable stars MS Peg and LM Com. The radial velocities of the components, reflection effects in the spectra, and light curves of the systems are studied based on model stellar atmospheres subject to external irradiation. Forty-seven moderate-resolution spectra for MS Peg and 57 for LM Com obtained with the 6-m telescope of the Special Astrophysical Observatory are used to derive the refined orbital periods of 0.1736660 days and 0.2586873 days, respectively; the orbital eccentricities do not exceed e=0.04. The mass (M w =0.49e) and radius (e w =0.015R) of the MS Peg primary calculated using the gravitational redshift correspond to those for a cooling carbon white dwarf with a thin hydrogen envelope. The parameters of the red dwarf (M r =0.19M, Teff=3560 K, R r =0.18R) are close to those derived from evolutionary tracks for main-sequence M stars with solar chemical composition. The radius (R r =0.22R) and temperature (Teff=3650 K) of the LM Com secondary exceed theoretical estimates for main-sequence stars with masses of M r =0.17M. The luminosity excess of the red dwarf in LM Com can be explained by a prolonged (T>5×106 yrs) relaxation of the M star to its normal state after the binary leaves the common-envelope stage. For both systems, theoretical U, B, V, and R light curves and spectra calculated using the adopted sets of parameters are generally consistent with the observations. This confirms the radiative origin of the hot spots, the unimportance of horizontal radiative transport, and the absence of large-scale velocity fields with high values (Vtrans>50 km/s) at the surfaces of the secondaries. Most of the emission lines in the spectra of these objects are formed under conditions close to thermalization, enabling modeling of their pro files in an LTE approximation. A strong λ3905 Å emission line has been identified as the 3s23p4s 1P0-3s23p2 1S SiI λ3905.52 Å line formed in the atmosphere of the hot spot. The observed intensity can be explained by non-LTE “superionization” of SiI atoms by soft UV radiation from the white dwarf. We suggest a technique for identifying binaries whose cool components are subject to UV irradiation based on observations of λ3905 Å emission in their spectra.  相似文献   

18.
The Curie point depth map of Eastern Iran was constituted from spectral analysis of the aeromagnetic data. The reduction to pole (RTP) was applied to the magnetic anomaly data. The Curie point depth values from 165 overlapping blocks, 100 × 100 km in size, have been estimated. The Curie point depth method provides a relationship between the 2-D FFT power spectrum of the magnetic anomalies and the depth of magnetic sources by transforming the spatial data into the frequency domain. The centroid and top depth of the magnetic sources (respectively Z0 and Zt) is calculated from radially averaged log power spectrum for each block. Finally, the Curie point depth of Eastern Iran is obtained by Zb = 2Z0Zt. The highest value of 24 km is located in eastern and western boundaries of the Lut block, and the lowest value of 12 km is located at north of study area. The shallow depths in the Curie-point depth map are well correlated with the young volcanic areas and geothermal potential fields. Geothermal gradient ranging from 24 to 45°C/km. The deduced thermal structure in eastern Iran has a relationship with orogenic collapse associated with delamination of thickened lithospheric root between the Lut and Afghan continental blocks.  相似文献   

19.
Variations in the flux of Jovian electrons near the Earth in two synodic cycles of the Earth–Jupiter system, in 1974–1975 and 2007–2008, are considered. In the 1974–1975 cycle, Jovian electrons were observed by IMP-8 during 13 successive solar rotations; electrons were observed by SOHO during 14 solar rotations during the 2007–2008 cycle. The fluxes of these electrons in each solar revolution experienced variations with a characteristic time scale of ~27 d , with the maximum flux near the middle of the rotation. The mean period of the variations does not coincide with the synodic period for the Sun–Earth system, equal to 27.3 d . The mean variation periods for the electron fluxes were 26.8 d in 1974–1975 and 26.1 d in 2007–2008. The detected variations are interpreted as reflecting variations in the structure of the solar wind speed and associated magnetic traps, the confinement time of the electrons in thesemagnetic traps, and the influence of the relative positions of the Earth and Jupiter in space.  相似文献   

20.
Non-Darcian flow to a partially penetrating well in a confined aquifer with a finite-thickness skin was investigated. The Izbash equation is used to describe the non-Darcian flow in the horizontal direction, and the vertical flow is described as Darcian. The solution for the newly developed non-Darcian flow model can be obtained by applying the linearization procedure in conjunction with the Laplace transform and the finite Fourier cosine transform. The flow model combines the effects of the non-Darcian flow, partial penetration of the well, and the finite thickness of the well skin. The results show that the depression cone spread is larger for the Darcian flow than for the non-Darcian flow. The drawdowns within the skin zone for a fully penetrating well are smaller than those for the partially penetrating well. The skin type and skin thickness have great impact on the drawdown in the skin zone, while they have little influence on drawdown in the formation zone. The sensitivity analysis indicates that the drawdown in the formation zone is sensitive to the power index (n), the length of well screen (w), the apparent radial hydraulic conductivity of the formation zone (K r2), and the specific storage of the formation zone (S s2) at early times, and it is very sensitive to the parameters n, w and K r2 at late times, especially to n, while it is not sensitive to the skin thickness (r s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号