首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Results are presented from a 1-year campaign to measure the seasonal variability of some key physical and biological properties of intertidal mudflats over a section of the central Tamar Estuary and to relate these to the physical environment. Seasonal variations in physical mudflat properties, such as grain size, density and moisture content were relatively small. With the exception of the particulate organic carbon content in the upper 0.002 m of surface sediment, biological variations were large. Redox potential exhibited considerable seasonal variation and showed that the sediments were less reduced in winter and more reduced in summer. Chlorophyll a and extracellular polymeric substances (EPS) within the surface 0.002 m of sediment (due to the presence of benthic diatoms) were strongly correlated and exhibited a pronounced seasonal pattern, with smallest values during winter and greatest values during late summer and early autumn. EPS had a dominating influence on sediment erosion, as determined from annular flume measurements. Velocity measurements and velocity modelling indicated that during the flood, and for much of the time during benthic diatom bloom conditions of high chlorophyll a and EPS sediment contents, the stresses exerted by tidal currents were too small to cause significant suspension of sediments over much of the middle and upper mudflats. Suspended fine sediment in the turbidity maximum zone was transported down-estuary and deposited in the main channel at low-water (LW) slack. Some of this sediment, in the form of relatively large aggregates, was subsequently transported onto the mudflats during the flooding tide, where slack currents and fast settling velocities may have enhanced sediment deposition there.Responsible Editor: Hans Burchard  相似文献   

2.
Deposition and storage of fine‐grained (<62·5 μm) sediment in the hyporheic zone of gravel bed rivers frequently represents an important cause of aquatic habitat degradation. The particle size characteristics of such fine‐grained bed sediment (FGBS) exert an important control on its hydrodynamic properties and environmental impact. Traditionally, particle size analysis of FGBS in gravel bed rivers has focused on the absolute size distribution of the chemically dispersed mineral fraction. However, recent work has indicated that in common with fluvial suspended sediment, significant differences may exist between the absolute and the in situ, or effective, particle size composition of FGBS, as a result of the existence of aggregates, or composite particles. In the investigation reported in this paper, sealable bed traps that could be remotely opened to sample sediment deposited during specific storm runoff events and a laser back‐scatter probe were used to quantify the temporal and spatial variability of both the absolute and effective particle size composition of FGBS, and the associated suspended sediment from four gravel bed rivers in the Exe Basin, Devon, UK. The absolute particle size distributions of both the FGBS and suspended sediment evidenced c. >95%<62·5 μm sized primary particles and displayed a seasonal winter–summer fining, while the opposite trend was displayed by the effective particle size distribution of the FGBS and suspended sediment. The effective particle size distributions of both were typically highly aggregated, comprising up to 68%>62·5 μm sized particles. Spatial variation in the effective particle size and aggregation parameters was of secondary importance relative to temporal variation. The effective particle size distribution of the FGBS was consistently coarser and more aggregated than the associated suspended sediment and there was evidence of aggregate break‐up in samples of resuspended bed sediment. The implications of these findings for sediment transport modelling are considered. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Cosmogenic 7Be is a natural tracer of short‐term hydrological processes, but its distribution in upland fluvial environments over different temporal and spatial scales has not been well described. We measured 7Be in 450 sediment samples collected from perennial channels draining the middle of the Connecticut River Basin, an environment that is predominantly well‐sorted sand. By sampling tributaries that have natural and managed fluctuations in discharge, we find that the 7Be activity in thalweg sediments is not necessarily limited by the supply of new or fine‐grained sediment, but is controlled seasonally by atmospheric flux variations and the magnitude and frequency of bed mobilizing events. In late winter, 7Be concentrations in transitional bedload are lowest, typically 1 to 3 Bq kg?1 as 7Be is lost from watersheds via radioactive decay in the snowpack. In mid‐summer, however, 7Be concentrations are at least twice as high because of increased convective storm activity which delivers high 7Be fluxes directly to the fluvial system. A mixed layer of sediment at least 8 cm thick is maintained for months in channels during persistent low rainfall and flow conditions, indicating that stationary sediments can be recharged with 7Be. However, bed mobilizing rain on snowmelt events in late Spring can ‘reset’ 7Be amounts and concentrations in the channel as previously buried ‘old’ sediment with low 7Be is mixed into the thalweg. We conclude that given proper temporal and spatial sampling, 7Be is a valuable tracer of seasonal‐timescale mass transport and exchange in coarse‐grained fluvial systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Variability of suspended sediment concentration (SSC) versus discharge relationships in streams is often high and illustrates variable particle origins or availability. Particle availability depends on both new sediment supply and deposited sediment stock. The aim of this study is to improve SSC–discharge relationship interpretation, in order to determine the origins of particles and to understand the temporal dynamics of particles for two small streams in agricultural catchments from northwestern France. SSC and discharge were continuously recorded at the outlets and data were examined at different time‐scales: yearly, monthly, with distinction between flood periods and non‐flooding periods, and individual flood events. Floods are classified in relation to SSC–discharge hysteresis, and this typology is completed by the analysis of SSC–discharge ranges during rising and falling flow. We show that particles are mainly coming from channel, banks, either by hydraulic erosion or by cattle trampling. Particle availability presents a seasonal dynamics with a maximum at the beginning of autumn when discharge is low, decreasing progressively during autumn to become a minimum in winter when discharge is the highest, and increasing again in spring. Bank degradation by cattle is the determining factor in the suspended sediment dynamics. Cattle bank‐trampling produces sediment, mostly from spring to autumn, that supplies the deposited sediment stock even outside floods. This hydrologically independent process hides SSC–discharge correlation classically linked to hydraulic erosion and transport. Differences in SSC–discharge relationships and suspended sediment budgets between streams are related to differences in transport capacity and bank degradation by cattle trampling and channelization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Most of the streams in the Mediterranean region are temporary, following predictable seasonal of flooding and drying, with a transition from lotic conditions to shallow lentic conditions. The goal of our study was to assess the nitrogen and phosphorus dynamics in channel-bed processes of temporary streams between floods. Results show that, during winter, temperatures ranged between 9.5 and 11.2 °C and oxygen concentration ranged from 8.0 to 9.5 mg L−1, whereas, during summer, temperatures varied between 21.2 and 26.8 °C and oxygen between 1.2 and 5.3 mg L−1, with oxygen depletion in the pools during the night. The nitrate concentrations were far more abundant during winter (February), while ammonium concentration increased after stream fragmentation into pools (especially in July when oxygen depletion conditions favoured ammonification). Results on sediment profiles showed that the most active sediment layers for NH4-N are the top 2–3 cm, corresponding to the sediment depositional sites of the stream. Phosphate concentrations had larger variability, yet concentrations decreased from winter to spring and increased again in summer, when the shallow water pools were formed. Sediment profiles at the sediment depositional sites showed that PO4-P was more dynamic in the first 6 cm.

In Mediterranean temporary streams, nutrient dynamics vary seasonally, as the system transits from lotic conditions to shallow lentic conditions, evidencing the regeneration of nutrients from organic and inorganic matter during the flow cessation period.  相似文献   


7.
Two controlled flow events were generated by releasing water from a reservoir into the Olewiger Bach, located near Trier, Germany. This controlled release of near bank‐full flows allowed an investigation of the fine sediment (<63 µm) mobilized from channel storage. Both a winter (November) and a summer (June) release event were generated, each having very different antecedent flow conditions. The characteristics of the release hydrographs and the associated sediment transport indicated a reverse hysteresis with more mass, but smaller grain sizes, moving on the falling limb. Fine sediment stored to a depth of 10 cm in the gravels decreased following the release events, indicating the dynamic nature and importance of channel‐stored sediments as source materials during high flow events. Sediment traps, filled with clean natural gravel, were buried in riffles before the release of the reservoir water and the total mass of fine sediment collected by the traps was measured following the events. Twice the mass of fine sediment was retained by the gravel traps compared with the natural gravels, which may be due to their altered porosity. Although the amount of fine sediment collected by the traps was not significantly related to measures of gravel structure, it was found to be significantly correlated to measures of local flow velocity and Froude number. A portion of the traps were fitted with lids to restrict surface exchange of water and sediment. These collected the highest amounts of event‐mobilized sediments, indicating that inter‐gravel lateral flows, not just surface infiltration of sediments, are important in replenishing and redistributing the channel‐stored fines. These findings regarding the magnitude and direction of fine sediment movement in gravel beds are significant in both a geomorphic and a biological context. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A deeper understanding of the sediment characteristics associated with rock fragment content can improve our knowledge of the erosional processes and transport mechanisms of sediments on steep rocky slopes. This research used simulated rainfall experiments lasting for 1 h at a rate of 90 mm h−1 and employed 5 × 1 × 0.4 m parallel troughs filled with purple soils with different rock fragment volumetric contents (0, 5, 10, 20, 30 and 40%) on a 15° slope gradient. For each simulated event, runoff and sediment were sampled at 1- and 3-min intervals, respectively, to study, in detail, the temporal changes in the size distributions of the eroded sediments. The results show that sediment concentrations, soil erosion rates and soil loss ratios significantly decreased as rock fragment content increased for rock fragment contents from 0 to 40% in purple soils. During the transportation process, clay particles often formed aggregates and were then transported as larger particles. Silt particles were more likely to be transported as primary particles with a low degree of sediment aggregation. Sand-sized particles, which constituted a greater proportion of the original soil than the eroded sediments, were formed from other fine particles and transported as aggregates rather than as primary particles. Suspension-saltation, which mainly transports fine particles of 0.02–0.05 mm and coarse particles larger than 0.5 mm in size, was the most important transport mechanism on steep rocky slopes. The results of this study can help to explain the inherent laws of erosional processes on steep rocky slopes and can provide a foundation for improving physical models of soil erosion. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
River restoration works often include measures to promote morphological diversity and enhance habitat suitability. One of these measures is the creation of macro‐roughness elements, such as lateral cavities and embayments, in the banks of channelized rivers. However, in flows that are heavily charged with fine sediments in suspension, such as glacier‐fed streams and very low‐gradient reaches of large catchment rivers, these lateral cavities may trap these sediments. Consequently, the morphological changes may be affected, and the functionality of the restoration interventions may be compromised. Herein, we analyse the influence of these macro‐roughness elements on the transport of fine sediments in the main channel. Laboratory tests with uniform flow charged with sediments in a channel with banks equipped with large‐scale rectangular roughness elements were carried out. The laboratory experiments covered a wide range of rectangular cavity geometrical configurations and shallowness ratios. The influence of key parameters such as flow shallowness, geometric ratios of the cavities and initial sediment concentration was tested. Surface particle image velocimetry, sediment samples and temporal turbidity records were collected during the experiments. The amount of sediments captured by the cavities, the temporal evolution of the concentration of sediments in suspension and the flow hydrodynamics are cross‐analysed and discussed. It is shown that the trapping efficiency of the macro‐roughness elements is a clear function of the channel geometry and the shallowness of the flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Stream surface albedo plays a key role in the energy balance of rivers and streams that are exposed to direct solar radiation. Most physically based analyses and models have incorporated a constant stream albedo between 0.03 and 0.10, based primarily on measurements from low‐gradient streams with low suspended sediment concentrations. However, albedo should vary with solar elevation angle, suspended sediment concentration, aeration, and fraction of direct versus diffuse radiation. The objective of this study was to quantify the dependence of albedo of mountain streams on the controlling factors and to develop a predictive model for use in physically based analysis and modelling of stream temperature, especially for future climate and land‐use scenarios. Stream surface albedo was measured at nine sites with a variety of gradients and suspended sediment characteristics in the southern Coast Mountains of British Columbia, Canada. As expected, albedo of low‐gradient, non‐white water (flatwater) streams increased with solar elevation angle, suspended sediment concentration, and proportion of diffuse to direct solar radiation, ranging between 0.025 during cloudy periods over clear water to 0.25 for turbid water at elevation angles of less than 20°. Albedo was enhanced in steep reaches or at channel steps and cascades where flow was visibly aerated, with a range of 0.09 to 0.33. In clear weather, albedo exhibited notable diurnal variability at flatwater sampling sites. For example, during late summer, surface albedo typically fluctuated between 0.08 and 0.15 on a daily basis at a flatwater site on the highly turbid, glacier‐fed Lillooet River. Multiple regression models explained approximately 60% and 40% of the variance under cross validation for flatwater and white water data subsets, respectively, with corresponding root mean square errors of approximately 0.02 and 0.06.  相似文献   

12.
Elaborate experiments were performed in a 30 m long, 0.5 m deep and 0.2 m wide laboratory flume to study the process of infiltration of fine sediment into the pores of coarse sediment forming the channel bed material. Different concentrations of suspended load of fine sediment of size 0.064 mm were passed over the channel bed made up of three different types of coarse sediments; two uniform and one nonuniform. The proportion of fine sediment infiltrated into the pores of bed material for each equilibrium concentration of suspended load of fine sediment in the flow was studied during several experimental runs. The proportion of fine sediment within the pores of bed material increased with an increase in the equilibrium concentration of suspended load of fine sediment in the flow. This process continued till the pores within the coarse sediment bed were filled up to the capacity with the fine sediment transported by the flow in suspension. The theoretical value was identified for limit for maximum proportion of fine sediment that can be present within the pores of bed material. On further increase in the concentration of suspended load of fine sediment in the flow, deposition of fine sediment occurs on the surface of the flume bed in the form of ripples of the fine sediment. This condition is defined as 'depositional condition'. Experimental observations on these and related aspects are presented herein.  相似文献   

13.
Samples of surficial fine-grained laminae (SFGL) were collected in three south-western Ontario rivers. Each sediment sample was subjected to a sequential extraction procedure designed to partition particulate metals (Cd, Pb, Cu, Zn) into five operationally defined fractions: (1) exchangeable; (2) bound to carbonates; (3) bound to Fe-Mn oxides; (4) bound to organic matter; and (5) residual. Particulate phosphus was sequentially extracted from the sediment samples into three fractions: (1) non-apatite inorganic P; (2) apatite P; and (3) organic P. The major accumulate phases of trace metals in SFGL are carbonates, Fe-Mn oxides and organic matter. The content of NAIP in SFGL ranged from 17 to 38% of total particulate P. Compared with suspended and bed sediments, levels of P and trace metals in SFGL were lower at the study sites. A conceptual overview of physical, chemical and biological processes influencing formation of SFGL and the potential role of this fine-grained sediment for contaminant transport in fluvial systems is presented.  相似文献   

14.
Gravel road surfaces can be a major source of fine sediment to streams, yet their contribution to channel reach sediment balances remains poorly documented. To quantify the input of road surface material and to compare this input with natural sediment sources at the reach scale, suspended sediment dynamics was examined and a 16‐month sediment balance was developed for a ~35 channel‐width (approx. 425 m) reach of the Honna River, a medium‐size, road‐affected stream located in coastal British Columbia. Of the 105 ± 33 t of suspended material passing through the reach, 18 ± 6% was attributed to the road surface. The high availability of sediment on the road surface appears to limit hysteresis in road run‐off. During rainstorms that increase streamflow, road surface material composed 0.5–15% of sediment inputs during relatively dry conditions from April to the end of September and 5–70% through wetter conditions from October to the end of March, but our data do not show evidence of major sediment accumulation on the riverbed in the reach. A comparison of modelled sediment production on the road surface with observed yields from drainage channels suggests that (1) during low intensity rainfall, ditches and drainage channels may trap sediment from road run‐off, which is subsequently released during events of greater intensity, and/or (2) production models do not effectively describe processes, such as deposition or erosion of sediment in ditches, which control sediment transport and delivery. Our findings further emphasize the risk of unpaved roads in polluting river systems and highlight the continued need for careful road design and location away from sensitive aquatic environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Two surveys were conducted in December, 2008, and August, 2009, in the mud depo-center off the Zhejiang-Fujian coast (MDZFC) in the inner shelf of East China Sea to depict the seasonal variation of the water column structure and analyze the factors responsible for the variation. The results were also used to discuss the sediment transport process and formation mechanism of the MDZFC. The water column structures varied significantly between the two surveys, with respect to the temperature, salinity, and turbidity. The summer water body, with relatively high temperatures and salinities, was evidently stratified with respect to the temperature, whereas the salinity remained constant throughout the water column. The stratification restricts sediment resuspension and transport. From the north to the south, the temperature in the middle-bottom water layer slightly increased, whereas the salinity remained mostly constant. In winter, the water body, with relatively low temperatures and salinities, was well mixed vertically. The temperature and salinity both increased from the surface to the bottom toward the east (deep water) and the south. A wedge-shaped water mass, which appears as a coastal upwelling, with relatively low temperature and high salinity in summer and relatively high temperature and high salinity in winter, spread landward along the sea floor, from the sea deeper than 50 m, whereas the extension was relatively stronger in winter. The water turbidity in winter was clearly higher than in summer. In the surface layer, the turbidity was generally greater than 5 FTU in winter and less than 1 FTU in summer. In the bottom layer, the turbidity was much greater than 200 FTU in winter and slightly greater than 50 FTU in summer. Moreover, the turbid water layer close to the sea floor in winter can reach into an area deeper than 50 m with a thickness of over 10 m; however, it was only limited to only 30-m-deep water with a thickness of 5 m in summer. The differences of marine sedimentary environment in the MDZFC were attributed to the seasonal variations of hydrodynamics environment, weather conditions, sediment supplies, and seasonal circulations. The results suggest that winter is the key season for particle transportation and deposition. The bottom turbid layer is the primarily channel of sediment transport, and the upwelling currents and the oceanic front systems play an important role in the sediment deposit processes and the formation of the MDZFC.  相似文献   

16.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The knowledge on particle deposition in streams is mainly based on investigations in mountain streams. No data exist from low‐gradient sand‐bed streams that largely differ in the morphological and hydraulic factors proposed to affect deposition. To identify physical control on particle deposition in low‐gradient streams, we assessed deposition of very fine and ultra fine organic particulate matter in 18 sand‐bed stream reaches. We added particles derived from lake sediment and assessed the mean transport distance SP and the deposition velocity vdep. Additionally, reach hydraulics were estimated by injections of a conservative solute tracer (NaCl). Among the low‐gradient streams, particle deposition kinetics were variable but similar to deposition in mountain streams. SP was solely related to the flow velocity. This relation was confirmed when comprising published data on deposition of fine organic particles. An association between particle deposition and transient storage factors was insignificant. We found significance of the transient storage to SP only for repeated measures within a single reach, when flow velocity and benthic conditions were nearly constant. Measured vdep/vfall ratios were much larger than unity in most reaches. Evidence from this relation suggests that the vertical transport of very fine and ultra fine organic particulate matter through the water column was caused mainly by vertical mixing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This study examines the particle size characteristics of hillslope soils and fluvial suspended sediments in an agricultural catchment. Samples of surface runoff and stream flow were collected periodically and analysed for the size distributions of the effective (undispersed) sediment. This sediment was subsequently dispersed and the ultimate size distributions determined. The median effective particle size of stream suspended sediment was considerably coarser than the median ultimate particle size, indicating that most of the load included a substantial proportion of aggregates. Moreover, the proportion of fine material (i.e. silt and clay) increased, and the proportion of sand-sized material decreased, with increasing discharge. This decrease in sediment size with increased flow, which is contrary to the traditional assumption of a positive discharge/particle size relationship, is thought to reflect: (i) the influx of silt and clay, predominantly the former, originating on the catchment slopes and brought to the stream by overland flow along vehicle wheelings, roads and tracks; and (ii) erosion of fine material from the channel bed and banks. During large storms, however, the proportion of sand-sized sediment increased during the rising limb of the hydrograph, as a result of the entrainment of coarser source material from the valley floor during overbank flooding. The stream suspended sediment was finer than the catchment soils and considerably finer than material eroding from the catchment slopes during storms. The degree of clay and silt enrichment in the suspended sediments was largely the result of preferential deposition of the coarser fraction during the transport and delivery of sediment from its source to basin outlet. The data from this study confirm that a significant mode of sediment transport in fluvial systems is in the form of aggregates, and that the dispersed sediment size distribution is inappropriate for determining the transportability of sediment by flow. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
Suspended sediment dynamics are still imperfectly understood, especially in the loess hilly region on the Loess Plateau, with strong temporal variability, where few studies heretofore have been conducted. Using a dataset up to eight years long in the Lower Chabagou Creek, the variability in suspended sediment load at different temporal scales (within‐flood variability, monthly–seasonal and annual) is analyzed in this paper. The results show that, on the within‐flood scale, most of the sediment peaks lag behind peak discharges, implying that slope zones are the main sediment source area; independent of the occurring sequences of the peaks of sediment and discharge, all the events could present an anti‐clockwise hysteresis loop resulting from the abundant material and the influence of hyperconcentrated flows on suspended sediment concentration. At monthly and seasonal scales, there is a ‘store–release’ process, i.e. sediment is prepared in winter, spring and late autumn, and exported in summer and early autumn. At the annual scale, the high variability in concentration and sediment yield are highly correlated with water yield, resulting from the number and magnitude of floods recorded yearly, and almost all the suspended load is transported during these events. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号