首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Land use/cover (LULC) and climate change are two main factors affecting watershed hydrology. In this paper, individual and combined impacts of LULC and climate change on hydrologic processes were analysed applying the model Soil and Water Assessment Tool in a coastal Alabama watershed in USA. Temporally and spatially downscaled Global Circulation Model outputs predict a slight increase in precipitation in the study area, which is also projected to experience substantial urban growth in the future. Changes in flow frequency and volume in the 2030s (2016–2040) compared to a baseline period (1984–2008) at daily, monthly and annual time scales were explored. A redistribution of daily streamflow is projected when either climate or LULC change was considered. High flows are predicted to increase, while low flows are expected to decrease. Combined change effect results in a more noticeable and uneven distribution of daily streamflow. Monthly average streamflow and surface runoff are projected to increase in spring and winter, but especially in fall. LULC change does not have a significant effect on monthly average streamflow, but the change affects partitioning of streamflow, causing higher surface runoff and lower baseflow. The combined effect leads to a dramatic increase in monthly average streamflow with a stronger increasing trend in surface runoff and decreasing trend in baseflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
I. W. Jung  D. H. Bae  B. J. Lee 《水文研究》2013,27(7):1033-1045
Seasonality in hydrology is closely related to regional water management and planning. There is a strong consensus that global warming will likely increase streamflow seasonality in snow‐dominated regions due to decreasing snowfall and earlier snowmelt, resulting in wetter winters and drier summers. However, impacts to seasonality remain unclear in rain‐dominated regions with extreme seasonality in streamflow, including South Korea. This study investigated potential changes in seasonal streamflow due to climate change and associated uncertainties based on multi‐model projections. Seasonal flow changes were projected using the combination of 13 atmosphere–ocean general circulation model simulations and three semi‐distributed hydrologic models under three different future greenhouse gas emission scenarios for two future periods (2020s and 2080s). Our results show that streamflow seasonality is likely to be aggravated due to increases in wet season flow (July through September) and decreases in dry season flow (October through March). In South Korea, dry season flow supports water supply and ecosystem services, and wet season flow is related to flood risk. Therefore, these potential changes in streamflow seasonality could bring water management challenges to the Korean water resources system, especially decreases in water availability and increases in flood risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Understanding the impacts of land‐use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land‐use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and Water Assessment Tool (AVSWAT2000). Model calibration and uncertainty analysis were performed with sequential uncertainty fitting (SUFI‐2). Simulation results from January 1998 to December 2002 were used for parameter calibration, and then the model was validated for the period of January 2003 to December 2004. The predicted monthly streamflow matched the observed values: during calibration the correlation coefficient was 0·86 and the Nash–Sutcliffe coefficient 0·79, compared with 0·80 and 0·79, respectively, during validation. The model was used to simulate the main components of the hydrological cycle, in order to study the effects of land‐use changes in 1967, 1994 and 2007. The study reveals that during 1967 a 34·5% decrease of grassland with concurrent increases of shrubland (13·9%), rain‐fed agriculture (12·1%), bare ground (5·5%) irrigated agriculture (2·2%), and urban area (0·7%) led to a 33% increase in the amount of surface runoff and a 22% decrease in the groundwater recharge. Furthermore, the area of sub‐basins that was influenced by high runoff (14–28 mm) increased. The results indicate that the hydrological response to overgrazing and the replacing of rangelands (grassland and shrubland) with rain‐fed agriculture and bare ground (badlands) is nonlinear and exhibits a threshold effect. The runoff rises dramatically when more than 60% of the rangeland is removed. For groundwater this threshold lies at an 80% decrease in rangeland. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
We investigated, through hydrologic modelling, the impact of the extent and density of canopy cover on streamflow timing and on the magnitude of peak and late summer flows in the upper Tuolumne basin (2600–4000 m) of the Sierra Nevada, California, under current and warmer temperatures. We used the Distributed Hydrology Soil Vegetation Model for the hydrologic modelling of the basin, assuming four vegetation scenarios: current forest (partial cover, 80% density), all forest (uniform coverage, 80% density), all barren (no forest) and thinned forest (partial cover, 40% density) for a medium‐high emissions scenario causing a 3.9 °C warming over a 100‐year period (2001–2100). Significant advances in streamflow timing, quantified as the centre of mass (COM) of over 1 month were projected for all vegetation scenarios. However, the COM advances faster with increased forest coverage. For example, when forest covered the entire area, the COM occurred on average 12 days earlier compared with the current forest coverage, with the rate of advance higher by about 0.06 days year?1 over 100 years and with peak and late summer flows lower by about 20% and 27%, respectively. Examination of modelled changes in energy balance components at forested and barren sites as temperatures rise indicated that increases in net longwave radiation are higher in the forest case and have a higher contribution to melting earlier in the calendar year when shortwave radiation is a smaller fraction of the energy budget. These increases contributed to increased midwinter melt under the forest at temperatures above freezing, causing decreases in total accumulation and higher winter and early spring melt rates. These results highlight the importance of carefully considering the combined impacts of changing forest cover and climate on downstream water supply and mountain ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes the use of a continuous streamflow model to examine the effects of climate and land use change on flow duration in six urbanizing watersheds in the Maryland Piedmont region. The hydrologic model is coupled with an optimization routine to achieve an agreement between observed and simulated streamflow. Future predictions are made for three scenarios: future climate change, land use change, and jointly varying climate and land use. Future climate is modelled using precipitation and temperature predictions for the Canadian Climate Centre (CCC) and Hadley climate models. Results show that a significant increase in temperature under the CCC climate predictions produces a decreasing trend in low flows. A significant increasing trend in precipitation under the Hadley climate predictions produces an increasing trend in peak flows. Land use change by itself, as simulated by an additional 10% increase in imperviousness (from 20·5 to 30·5%), produces no significant changes in the simulated flow durations. However, coupling the effects of land use change with climate change leads to more significant decreasing trends in low flows under the CCC climate predictions and more significant increasing trends in peak flows under Hadley climate predictions than when climate change alone is employed. These findings indicate that combined land use and climate change can result in more significant hydrologic change than either driver acting alone. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Discharge time series' are one of the core data sets used in hydrological investigations. Errors in the data mainly occur through uncertainty in gauging (measurement uncertainty) and uncertainty in determination of the stage–discharge relationship (rating curve uncertainty). Thirty‐six flow gauges from the Namoi River catchment, Australia, were examined to explore how rating curve uncertainty affects gauge reliability and uncertainty of observed flow records. The analysis focused on the deviations in gaugings from the rating curves because standard (statistical) uncertainty methods could not be applied. Deviations of greater/lesser than 10% were considered significant to allow for a measurement uncertainty threshold of 10%, determined from quality coding of gaugings and operational procedures. The deviations in gaugings were compared against various factors to examine trends and identify major controls, including stage height, date, month, rating table, gauging frequency and quality, catchment area and type of control. The analysis gave important insights into data quality and the reliability of each gauge, which had previously not been recognized. These included identification of more/less reliable periods of record, which varied widely between gauges, and identification of more/less reliable parts of the hydrograph. Most gauges showed significant deviations at low stages, affecting the determination of low flows. This was independent of the type of gauge control, with many gauges experiencing problems in the stability of the rating curve, likely as a result of sediment flux. The deviations in gaugings also have widespread application in modelling, for example, informing suitable calibration periods and defining error distributions. This paper demonstrates the value and importance of undertaking qualitative analyses of observed records. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Warming will affect snowline elevation, potentially altering the timing and magnitude of streamflow from mountain landscapes. Presently, the assessment of potential elevation‐dependent responses is difficult because many gauged watersheds integrate drainage areas that are both snow and rain dominated. To predict the impact of snowline rise on streamflow, we mapped the current snowline (1980 m) for the Salmon River watershed (Idaho, USA) and projected its elevation after 3 °C warming (2440 m). This increase results in a 40% reduction in snow‐covered area during winter months. We expand this analysis by collecting streamflow records from a new, elevation‐stratified gauging network of watersheds contained within high (2250–3800 m), mid (1500–2250 m) and low (300–1500 m) elevations that isolate snow, mixed and rain‐dominated precipitation regimes. Results indicate that lags between percentiles of precipitation and streamflow are much shorter in low elevations than in mid‐ and high‐elevation watersheds. Low elevation annual percentiles (Q25 and Q75) of streamflow occur 30–50 days earlier than in higher elevation watersheds. Extreme events in low elevations are dominated by low‐ and no‐flow events whereas mid‐ and high‐elevation extreme events are primarily large magnitude floods. Only mid‐ and high‐elevation watersheds are strongly cross correlated with catchment‐wide flow of the Salmon River, suggesting that changes in contributions from low‐elevation catchments may be poorly represented using mainstem gauges. As snowline rises, mid‐elevation watersheds will likely exhibit behaviours currently observed only at lower elevations. Streamflow monitoring networks designed for operational decision making or change detection may require modification to capture elevation‐dependent responses of streamflow to warming. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A distributed hydrological model (WaSiM-ETH) was applied to a mesoscale catchment to investigate natural flood management as a nonstructural approach to tackle flood risks from climate change. Peak flows were modelled using climate projections (UKCP09) combined with afforestation-based land-use change options. A significant increase in peak flows was modelled from climate change. Afforestation could reduce some of the increased flow, with greatest benefit from coniferous afforestation, especially replacing lowland farmland. Nevertheless, large-scale woodland expansion was required to maintain peak flows similar to present and beneficial effects were significantly reduced for larger “winter-type” extreme floods. Afforestation was also modelled to increase low-flow risks. Land-use scenarios showed catchment-scale trade-offs across multiple objectives meant “optimal” flood risk solutions were unlikely, especially for afforestation replacing lowland farmland. Hence, combined structural/nonstructural measures may be required in such situations, with integrated catchment management to synergize multiple objectives.  相似文献   

12.
Hydrological processes change from the impacts of climate variability and human activities. Runoff in the upper reaches of the Hun‐Taizi River basin, which is mainly covered by forests in northeast China, decreased from 1960 to 2006. The data used in this study were based on runoff records from six hydrological stations in the upper reaches of the Hun‐Taizi River basin. Nonparametric Mann–Kendall statistic was used to identify change trends and abrupt change points and consequently analyze the change characteristics in hydrological processes. The abrupt change in the annual runoff in most subcatchments appeared after 1975. Finally, the effects of climate change and land cover change on water resources were identified using regression analysis and a hydrology model. Results of the regression analysis suggest that the correlation coefficients between precipitation and runoff prior to the abrupt change were higher compared with those after the abrupt change. Moreover, using hydrology model analysis, the water yield was found to increase because of the decrease in forest land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Located in the Loess Plateau of China, the Wuding River basin (30 261 km2) contributes significantly to the total sediment yield in the Yellow River. To reduce sediment yield from the catchment, large-scale soil conservation measures have been implemented in the last four decades. These included building terraces and sediment-trapping dams and changing land cover by planting trees and improving pastures. It is important to assess the impact of these measures on the hydrology of the catchment and to provide a scientific basis for future soil conservation planning. The non-parametric Mann–Kendall–Sneyers rank test was employed to detect trends and changes in annual streamflow for the period of 1961 to 1997. Two methods were used to assess the impact of climate variability on mean annual streamflow. The first is based on a framework describing the sensitivity of annual streamflow to precipitation and potential evaporation, and the second relies on relationships between annual streamflow and precipitation. The two methods produced consistent results. A significant downward trend was found for annual streamflow, and an abrupt change occurred in 1972. The reduction in annual streamflow between 1972 and 1997 was 42% compared with the baseline period (1961–1971). Flood-season streamflow showed an even greater reduction of 49%. The streamflow regime of the catchment showed a relative reduction of 31% for most percentile flows, except for low flows, which showed a 57% reduction. The soil conservation measures reduced streamflow variability, leading to more uniform streamflow. It was estimated that the soil conservation measures account for 87% of the total reduction in mean annual streamflow in the period of 1972 to 1997, and the reduction due to changes in precipitation and potential evaporation was 13%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

The MHD-INPE model was applied in the Ji-Parana Basin, a 30 000 km2 catchment located in the southwest of the Amazon Basin which has lost more than 50% of its forest since the 1980s, to simulate land use and land cover change impacts on runoff generation process and how they are related to basin topography. Simulation results agree with observational studies in the sense that fast response processes are significant in sub-basins with steep slopes while in basins with gentle topography, the impacts are most visible in slow-response hydrological processes. On the other hand, the model is not able to capture the dependence of LUCC impacts on spatial scales. These discrepancies are probably associated with limitations in the spatial representation of heterogeneities within the model, which become more relevant at larger scales. We also tested the hypothesis that secondary forest growth should be able to compensate the decrease in evapotranspiration due to forest–cropland or forest–grassland conversion at a regional scale. Results showed that despite the small fraction of secondary forest estimated on the basin, the higher evapotranspiration efficiency of this type of forest counterbalances a large fraction of the LUCC impacts on evapotranspiration. This result suggests that enhanced transpiration due to secondary forest could explain, at least in part, the lack of clear LUCC signals in discharge series at larger scales.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR T. Wagener  相似文献   

15.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The temporal variability in nitrogen (N) transport in the Corbeira agroforestry catchment (NW Spain) was analysed from October 2004 to September 2008. Nitrate (NO3–N) and total Kjeldahl nitrogen (TKN) loads and concentrations were determined at various timescales (annual, seasonal and event). The results revealed a strong intra‐annual and inter‐annual variability in N transport influenced by weather patterns and consequently by the hydrological regime. Mean annual export of total N in the catchment was 5.5 kg ha?1 year?1, with NO3–N being the dominant form. Runoff events comprised 10% of the study period but contributed 40 and 61% of the total NO3–N and TKN loads, respectively. The NO3–N and TKN concentrations were higher during runoff events than under baseflow conditions, pointing to diffuse sources of N. The mobilization of TKN during runoff events was attributed to surface runoff, while NO3–N might be related to subsurface and groundwater flow. Runoff events were characterized by high variability in N loads and concentrations. Higher variability was observed in N loads than in N concentrations, indicating that event magnitude plays an important role in N transport in this catchment; event magnitude explained approximately 96% of the NO3–N load. However, a combination of variables related to runoff event intensity (rainfall, discharge increase and kinetic energy) explained only 66% of the TKN load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Climate change may significantly affect the hydrological cycle and water resource management, especially in arid and semi‐arid regions. In this paper, output from the Providing Regional Climates for Impacts Studies (PRECIS) regional climate model were used in conjunction with the Soil and Water Assessment Tool (SWAT) to analyse the effects of climate change on streamflow of the Xiying and Zamu rivers in the Shiyang River basin, an important arid region in northwest China. After SWAT model calibration and validation, streamflow in the Shiyang River Basin was simulated using the PRECIS climate model data for greenhouse gas emission scenarios A2 (high emission rate) and B2 (low emission rate) developed by Intergovernmental Panel on Climate Change. Monthly streamflow and hydrological extremes were compared for present‐day years (1961–1990), the 2020s (2011–2040), 2050s (2041–2070) and 2080s (2071–2100). The results show that mean monthly streamflow in Shiyang River Basin generally increased in the 2020s, 2050s and 2080s between 0.7–6.1% at the Zamu gauging station and 0.1–4.8% at the Xiying gauging station. The monthly minimum streamflow increased persistently, but the maximum monthly streamflows increased in the 2020s and slightly decreased in the 2050s and 2080s. This study provides valuable information for guiding future water resource management in the Shiyang River Basin and other arid and semi‐arid regions in China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In semi‐arid and arid river basins, understanding the connectivity between rivers and alluvial aquifers is one of the key challenges for the management of groundwater resources. The type of connection present (gaining, losing‐connected, transitional and losing‐disconnected) was assessed at 12 sites along six Murray–Darling Basin river reaches. The assessments were made by measuring the hydraulic head in the riparian zone near the rivers to evaluate if the water tables intersected the riverbeds and by measuring fluid pressure (ψ) in the riverbeds. The rationale for the latter was that ψ will always be greater than or equal to zero under connected conditions (either losing or gaining) and always lesser than or equal to zero under losing‐disconnected conditions. A mixture of losing‐disconnected, losing‐connected and gaining conditions was found among the 12 sites. The losing‐disconnected sites all had a riverbed with a lower hydraulic conductivity than the underlying aquifer, usually in the form of a silty clay or clay unit 0.5–2 m in thickness. The riparian water tables were 6 to 25 m below riverbed level at the losing‐disconnected sites but never lower than 1 m below riverbed level at the losing‐connected ones. The contrast in water table depth between connected and disconnected sites was attributed to the conditions at the time of the study, when a severe regional drought had generated a widespread decline in regional water tables. This decline was apparently compensated near losing‐connected rivers by increased infiltration rates, while the decline could not be compensated at the losing‐disconnected rivers because the infiltration rates were already maximal there. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Climate change and land use and cover change (LUCC) have had great impacts on watershed hydrological processes. Although previous studies have focused on quantitative assessment of the impacts of climate change and human activities on decreasing run‐off change, few studies have examined regions that have significant increasing run‐off due to both climate variability and land cover change. We show that annual run‐off had a significant increasing trend from 1956 to 2014 in the U.S. lower Connecticut River Basin. Abrupt change point years of annual run‐off for four subbasins are detected by nonparametric Mann–Kendall–Sneyers test and reconfirmed by the double mass curve. We then divide the study period into 2 subperiods at the abrupt change point year in the early 1970s for each subbasin. The Choudhury–Yang equation based on Budyko hypothesis was used to calculate precipitation and potential evapotranspiration, and landscape elasticities of run‐off. The results show that the difference in mean annual run‐off between 2 subperiods for each subbasin ranged from 102 to 165.6 mm. Climate variations were the primary drivers of increasing run‐off in this region. Quantitative contributions of precipitation and potential evapotranspiration in all subbasins are 106.5% and ?3.6% on average, respectively. However, LUCC contributed both positively and negatively to run‐off: ?18.6%, ?13.3%, and 10.1% and 9.9% for 4 subbasins. This may be attributed to historical LUCC occurring after the abrupt change point in each subbasin. Our results provide critical insight on the hydrological dynamics of north‐east tidal river systems to communities and policymakers engaged in water resources management in this region.  相似文献   

20.
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号