首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article explores the relations between network properties and the effect from moving rainstorms in terms of the peak response and time to centroid of hydrographs. A simple conceptual rectangular catchment is introduced with different configurations of drainage network simulated by the Gibbs stochastic model. The efficiency of the urban pipe networks varies widely compared with natural river networks; hence, the Gibbs model can be an appropriate approach to represent the network properties in urban drainage system. Simple cases of rainstorms moving with upstream and downstream directions and different speeds are considered to investigate the effect of rainstorm movement on urban drainage network runoff hydrographs. The results indicate that the effect of the direction and speed of the rainstorm movement varies significantly depending on the network properties. The relationship between storm speed and direction and the change in the peak runoff is dependent on the network configuration and network efficiency. In contrast to previous studies, this study indicates that the speed and direction of the rainfall movement that produces the maximum peak discharge changes depending on the network configuration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A model developed for estimating the evaporation of rainfall intercepted by forest canopies is applied to estimate measurements of the average runoff from the roofs of six houses made in a previous study of hydrological processes in an urban environment. The model is applied using values of the mean rates of wet canopy evaporation and rainfall derived previously for forests and an estimate of the roof storage capacity derived from the data collected in the previous study. Although the model prediction is sensitive to the value of storage capacity, close correlation between the modelled and measured runoff indicates that the model captures the essential processes. It is concluded that the process of evaporation from an urban roof is sufficiently similar to that from a forest canopy for forest evaporation models to be used to give a useful estimate of urban roof runoff. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
4.
An application of genetic programming (GP) and artificial neural networks (ANNs) in hydrology is proposed, showing how these two techniques can work together to solve the problem of modelling the effect of rain on the runoff flow in a typical urban basin. The ability of GP to include the physical basis of a problem and even to analyse the results is discussed, and a case study is included as an example. We propose a solution to this problem by using an ANN for the prediction of the daily flow due to human activity of the citizens and the use of GP for the prediction of the flow rate resulting from the rain. Finally, it is shown that the methodology can be used to solve similar problems by combining both techniques. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The documentation existing on both land use and the delineation of pervious and impervious zones in urban areas tends to be rather complete. In addition, topographical information (altitudes, slopes) is generally available, although contours are not drawn in detail on urban‐area maps. The development of urban databases has provided a convenient means of accessing this information for the purpose of hydrological modelling. The objective of this paper is to evaluate a recent model, ‘SURF’ (semi‐urbanized runoff flow), specifically developed for coupling with a GIS based on a digital terrain representation. This model was evaluated by use of an original approach from the field of urban hydrology. A 7‐year continuous data series, which includes the dry periods, has been used as input to run the model. The principles behind the SURF model are briefly described herein. A sensitivity analysis is then performed in order to select the most influential parameters. Following the calibration stage, the model's validation is discussed. This validation is conducted not only by comparing observed and simulated hydrographs, but also by comparing the SURF model with a more conventional model in urban hydrology, called the URBAN model. It is demonstrated that the SURF model provides useful simulation results and does outperform the URBAN model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
D. Ramier  E. Berthier  H. Andrieu 《水文研究》2011,25(14):2161-2178
Runoff on impervious surfaces (roads, roofs, etc.) raises a number of environmental and road safety‐related problems. The primary objective of this research effort is to improve our knowledge of the hydrological behaviour of impervious urban surfaces in order to better assess runoff on these surfaces and its subsequent consequences. This article will focus on two street stretches studied over a 38‐month period. Measurements of rainfall and runoff discharge on these stretches have made it possible to estimate runoff losses as well as to constitute a database for modelling purposes. On the basis of these data, two models have been used, one simple the other more detailed and physically based. For both models, runoff discharges at a 3‐min time step are well reproduced, although runoff coefficients and runoff losses are still poorly estimated. Detailed analyses of experimental data and model output, however, indicate that runoff losses could be quite high on such ‘impervious surfaces’ (between 30 and 40% of total rainfall, depending on the street stretch) and that these losses are mainly because of evaporation and infiltration inside the road structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
T. H. Brikowski 《水文研究》2015,29(7):1746-1756
Adaptation and mitigation efforts related to global trends in climate and water scarcity must often be implemented at the local, single‐catchment scale. A key requirement is understanding the impact of local climate and watershed characteristics coupled with these regional trends. For surface water, determination of multi‐parameter runoff elasticities is a promising tool for achieving such understanding, as explored here for two surface‐water dependent basins in Texas. The first basin is the water supply for Dallas‐Ft. Worth (DFW), and exhibits relatively high precipitation elasticity (proportional change in runoff to change in precipitation) εP = 2.64, and temperature elasticity εT = ? 0.41. Standard precipitation–temperature elasticity diagrams exhibit unusual concave contours of runoff change, indicating influence of additional parameters, which can be isolated using multi‐parameter approaches. The most influential local parameter in DFW is unexpected reduced runoff fraction in cooler wetter years. Those years exhibit increased summer (JJA) precipitation fraction, but predominant cracking soils in DFW minimize JJA runoff, yielding negative . A comparative basin near Houston shows positive , reflecting the local impact of tropical cyclones and lesser abundance of cracking soils. Both basins exhibit positive elasticity to 1‐year previous precipitation (e.g. DFW εP ? 1 = 1.24), reflecting the influence of soil moisture storage. Only DFW exhibits negative elasticity to 2‐year previous precipitation (εP ? 2 = ? 0.65), reflecting multi‐year influence of vegetation growth and increased evapotranspiration. Using these elasticities, analysis of historical multi‐decadal climate departures for DFW indicates the 80% decrease in runoff during the 1950–1957 drought of record was primarily caused by reduced precipitation. Runoff 56% above‐normal during an unprecedented 1986–1998 wet period was primarily caused by increased precipitation. Since 2000, despite precipitation slightly above normal, runoff has decreased 20%, primarily in response to ~ 1°C warming. Future precipitation droughts superimposed on this new drier normal are likely to be much more severe than historical experience would indicate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

Weather generators rely on historical meteorological records to simulate time series of synthetic weather sequences, the quality of which has direct influence on model applications. The climate generator CLIGEN’s database has recently been updated to comprise consistent historical records from 1974 to 2013 (updated CLIGEN database, UCD) compared to the current database in which records are of different lengths. In this study, CLIGEN’s performance in estimating precipitation using UCD (eight stations) and the subsequent impact on urban runoff simulations (371 stations) were evaluated in the Great Lakes Region, USA. Generally, UCD-based precipitation could replicate observed daily precipitation up to the 99.5th percentile, but maximum precipitation was underestimated. Results from the Long-Term Hydrologic Impact Assessment model using UCD-based precipitation showed about 0.57 billion cubic meters more (14.9%) average annual runoff being simulated compared with simulations based on the current CLIGEN database. Overall, CLIGEN with the updated database was found suitable for providing precipitation estimates and for use with modeling urban runoff or urbanization effects.  相似文献   

10.
Despite decades of research on the ecological consequences of stream network expansion, contraction and fragmentation, surprisingly little is known about the hydrological mechanisms that shape these processes. Here, we present field surveys of the active drainage networks of four California headwater streams (4–27 km2) spanning diverse topographic, geologic and climatic settings. We show that these stream networks dynamically expand, contract, disconnect and reconnect across all the sites we studied. Stream networks at all four sites contract and disconnect during seasonal flow recessions, with their total active network length, and thus their active drainage densities, decreasing by factors of two to three across the range of flows captured in our field surveys. The total flowing lengths of the active stream networks are approximate power‐law functions of unit discharge, with scaling exponents averaging 0.27 ± 0.04 (range: 0.18–0.40). The number of points where surface flow originates obey similar power‐law relationships, as do the lengths and origination points of flowing networks that are continuously connected to the outlet, with scaling exponents averaging 0.36–0.48. Even stream order shifts seasonally by up to two Strahler orders in our study catchments. Broadly, similar stream length scaling has been observed in catchments spanning widely varying geologic, topographic and climatic settings and spanning more than two orders of magnitude in size, suggesting that network extension/contraction is a general phenomenon that may have a general explanation. Points of emergence or disappearance of surface flow represent the balance between subsurface transmissivity in the hyporheic zone and the delivery of water from upstream. Thus the dynamics of stream network expansion and contraction, and connection and disconnection, may offer important clues to the spatial structure of the hyporheic zone, and to patterns and processes of runoff generation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A rainfall‐runoff model based on an artificial neural network (ANN) is presented for the Blue Nile catchment. The best geometry of the ANN rainfall‐runoff model in terms of number of hidden layers and nodes is identified through a sensitivity analysis. The Blue Nile catchment (about 300 000 km2) in the Nile basin is selected here as a case study. The catchment is classified into seven subcatchments, and the mean areal precipitation over those subcatchments is computed as a main input to the ANN model. The available daily data (1992–99) are divided into two sets for model calibration (1992–96) and for validation (1997–99). The results of the ANN model are compared with one of physical distributed rainfall‐runoff models that apply hydraulic and hydrologic fundamental equations in a grid base. The results over the case study area and the comparative analysis with the physically based distributed model show that the ANN technique has great potential in simulating the rainfall‐runoff process adequately. Because the available record used in the calibration of the ANN model is too short, the ANN model is biased compared with the distributed model, especially for high flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The study simulated the effect of using reservoir storage for reducing flood peaks and volumes in urban areas with the Dzorwulu basin in Accra, Ghana as case study. A triangulated irregular network surface of the floodplain was created using ArcGIS from ESRI by integrating digital elevation model and the map of the study area. The weighted curve number for the basin was obtained from the land use and soil type shape files using ArcGIS. The Soil Conservation Service curve number unit hydrograph procedure was used to obtain an inflow hydrograph based on the highest rainfall recorded in recent history (3–4 June 1995) in the study area and then routed through an existing reservoir to assess the impact of the reservoir on potential flood peak attenuation. The results from the analysis indicate that a total of 13.09 × 106 m3 of flood water was generated during this 10‐h rainstorm, inundating a total area of 6.89 km2 with a depth of 4.95 m at the deepest section of the basin stream. The routing results showed that the reservoir has capacity to store 34.52% of the flood hydrograph leading to 45% reduction in flood peak and subsequently 38.5% reduction in flood inundation depth downstream of the reservoir. From results of the study, the reservoir storage concept looks promising for urban flood management in Ghana, especially in communities that are over‐urbanized downstream but have some space upstream for creating the storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The need for accurate hydrologic analysis and rainfall–runoff modelling tools has been rapidly increasing because of the growing complexity of operational hydrologic and hydraulic problems associated with population growth, rapid urbanization and expansion of agricultural activities. Given the recent advances in remote sensing of physiographic features and the availability of near real‐time precipitation products, rainfall–runoff models are expected to predict runoff more accurately. In this study, we compare the performance and implementation requirements of two rainfall–runoff models for a semi‐urbanized watershed. One is a semi‐distributed conceptual model, the Hydrologic Engineering Center‐Hydrologic Modelling System (HEC‐HMS). The other is a physically based, distributed‐parameter hydrologic model, the Gridded Surface Subsurface Hydrologic Analysis (GSSHA). Four flood events that took place on the Leon Creek watershed, a sub‐watershed of the San Antonio River basin in Texas, were used in this study. The two models were driven by the Multisensor Precipitation Estimator radar products. One event (in 2007) was used for HEC‐HMS and GSSHA calibrations. Two events (in 2004 and 2007) were used for further calibration of HEC‐HMS. Three events (in 2002, 2004 and 2010) were used for model validation. In general, the physically based, distributed‐parameter model performed better than the conceptual model and required less calibration. The two models were prepared with the same minimum required input data, and the effort required to build the two models did not differ substantially. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

This study investigates the characteristics of hydrograph components from a watershed in Taiwan. Hydrograph components were modelled by using a model of three serial reservoirs with one parallel reservoir. Mean rainfall was calculated by using the block kriging method. The model parameters for 38 events were calibrated by using the shuffled complex evolution optimization algorithm. The model verification was made using 18 events. Based on the study results, the following findings were obtained: (1) for single-peak events, times to peak of hydrograph components are an increasing power function of the peak time of rainfall; (2) peak discharges of hydrograph components are linearly proportional to that of total runoff, and the ratios of quick and slow runoff are approximately 83% and 17% of total runoff, respectively; and (3) the total volume of quick runoff component is 52% of total runoff and that of slow runoff is 27%.

Editor D. Koutsoyiannis

Citation Li, Y.-J., Cheng, S.-J. Pao, T.-L. and Bi, Y.-J., 2012. Relating hydrograph components to rainfall and streamflow: a case study from northern Taiwan. Hydrological Sciences Journal, 57 (5), 861–877.  相似文献   

15.
ABSTRACT

The objective of this study was to evaluate, based on a data-scarce basin in southern Brazil, the potential of the Lavras Simulation of Hydrology (LASH) model for estimating daily streamflows, annual streamflow indicators and the flow–duration curve. It was also used to simulate the different runoff components and their consistency with the basin physiographical characteristics. The statistical measures indicated that LASH can be considered suitable according to widely used classifications and when compared with other studies involving hydrological models. LASH also showed satisfactory results for annual indicators, especially for maximum and average annual streamflows, as well as for the flow–duration curve. It was found that the model was consistent with the basin characteristics when simulating runoff components. The results obtained in this study allowed us to conclude that the LASH model has the potential to aid practitioners in water resources management of basins with scarce data and similar soil and land-use conditions.
Editor A. Castellarin; Associate editor Y. Gyasi-Agyei  相似文献   

16.
This paper proposes an approach to estimating the uncertainty related to EPA Storm Water Management Model model parameters, percentage routed (PR) and saturated hydraulic conductivity (Ksat), which are used to calculate stormwater runoff volumes. The methodology proposed in this paper addresses uncertainty through the development of probability distributions for urban hydrologic parameters through extensive calibration to observed flow data in the Philadelphia collection system. The established probability distributions are then applied to the Philadelphia Southeast district model through a Monte Carlo approach to estimate the uncertainty in prediction of combined sewer overflow volumes as related to hydrologic model parameter estimation. Understanding urban hydrology is critical to defining urban water resource problems. A variety of land use types within Philadelphia coupled with a history of cut and fill have resulted in a patchwork of urban fill and native soils. The complexity of urban hydrology can make model parameter estimation and defining model uncertainty a difficult task. The development of probability distributions for hydrologic parameters applied through Monte Carlo simulations provided a significant improvement in estimating model uncertainty over traditional model sensitivity analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water‐table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October–March) and summer (April–September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21–24% of annual rainfall, with more evaporation taking place during summer than winter. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
The importance and interaction of various hydrological pathways and identification of runoff source areas involved in solute transport are still under considerable debate in catchment hydrology. To reveal stormflow generating areas and flow paths, hydrometric behaviour of throughfall, soil water from various depths, runoff, and respective concentrations of the environmental tracers 18O, Si, K, SO4 and dissolved organic carbon were monitored for a 14‐week period in a steep headwater catchment in the Black Forest Mountains, Germany. Two stormflow hydrographs were selected and, based on 18O and Si, chemically separated into three flow components. Their sources were defined using mixing diagrams. Additional information about stormflow generating mechanisms was derived from recession analyses of the basin's complete 5‐year hydrograph record. By providing insight into storage properties and residence times of outflowing reservoirs of the basin, recession analysis proved to be a valuable tool in runoff model conceptualization. Its results agreed well with hydrometric and hydrochemical data. Supported by evaluation of 30 hillslope soil profiles a coherent concept of stormflow generation could be derived: whereas in many steeply sloped basins in the temperate region soil water from hillslopes appears to have an immediate effect on the shape of the stormflow hydrograph, its role at this basin is basically restricted to the recharge of the groundwater reservoir in the near‐channel area. Storm hydrograph peaks appear to be derived from a small direct runoff component supplemented by a fast delivery of baseflow from the groundwater reservoir in the valley bottom. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In many mountain basins, river discharge measurements are located far away from runoff source areas. This study tests whether a basic snowmelt runoff conceptual model can be used to estimate relative contributions of different elevation zones to basin‐scale discharge in the Cache la Poudre, a snowmelt‐dominated Rocky Mountain river. Model tests evaluate scenarios that vary model configuration, input variables, and parameter values to determine how these factors affect discharge simulation and the distribution of runoff generation with elevation. Results show that the model simulates basin discharge well (NSCE and R >0.90) when input precipitation and temperature are distributed with different lapse rates, with a rain‐snow threshold parameter between 0 and 3.3 °C, and with a melt rate parameter between 2 and 4 mm °C?1 d?1 because these variables and parameters can have compensating interactions with each other and with the runoff coefficient parameter. Only the hydrograph recession parameter can be uniquely defined with this model structure. These non‐unique model scenarios with different configurations, input variables, and parameter values all indicate that the majority of basin discharge comes from elevations above 2900 m, or less than 25% of the basin total area, with a steep increase in runoff generation above 2600 m. However, the simulations produce unrealistically low runoff ratios for elevations above 3000 m, highlighting the need for additional measurements of snow and discharge at under‐sampled elevations to evaluate the accuracy of simulated snow and runoff patterns. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less‐urbanized and non‐urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: in the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline‐rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less‐urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: values were 0·54 for the two Blue Ridge streams, 0·37 for the four middle Piedmont streams (near Atlanta), and 0·28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater than peak flows for the other streams. The storm recession period for the urban stream was 1–2 days less than that for the other streams and the recession was characterized by a 2‐day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less‐urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater recharge areas. The timing of daily or monthly groundwater‐level fluctuations was similar annually in each well, reflecting the seasonal recharge. Although water‐level monitoring only began in the 1980s for the two urban wells, water levels displayed a notable decline compared with non‐urban wells since then; this is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号