首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A seasonal water budget analysis was carried out to quantify various components of the hydrological cycle using the Soil and Water Assessment Tool (SWAT) model for the Betwa River basin (43?500 km2) in central India. The model results were satisfactory in calibration and validation. The seasonal water budget analysis showed that about 90% of annual rainfall and 97% of annual runoff occurred in the monsoon season. A seasonal linear trend analysis was carried out to detect trends in the water balance components of the basin for the period 1973–2001. In the monsoon season, an increasing trend in rainfall and a decreasing trend in ET were observed; this resulted in an increasing trend in groundwater storage and surface runoff. The winter season followed almost the same pattern. A decreasing trend was observed in summer season rainfall. The study evokes the need for conservation structures in the study area to reduce monsoon runoff and conserve it for basin requirements in water-scarce seasons.

EDITOR Z.W. Kundzewicz

ASSOCIATE EDITOR F. Hattermann  相似文献   

2.
Earlier efforts have been geared towards modelling the hydrological water balance of the Mackenzie River basin and its sub‐basins using a coupled land surface–hydrological model for the Canadian cold region known as WATCLASS. The goal of this current study is to effectively inter‐compare the resulting total water storage anomalies estimated from the gravity recovery and climate experiment (GRACE) satellite analysis with those estimated from the atmospheric‐based water balance approach as well as the model output from WATCLASS over the 1 · 8 × 106 km2 Mackenzie River basin in Canada. Since the success of the parameter estimation stage of the coupled land surface–hydrological model, WATCLASS over this large catchment, was entirely based on a goodness of fit between the simulated and observed flows, it is often desirable to assess the reliability of the generated state variables prior to concluding on the overall efficiency of this model in reproducing the relevant hydrological processes over this region. A major challenge here lies in finding suitable dataset with which this comparison can be made to further assess the ability of the model in accurately reproducing other mass fluxes. The outcome of this inter‐comparison reveals the potential application of the GRACE‐based approach as a veritable tool required for the closure of the hydrological water balance of the Mackenzie River basin as well as serving as a dependable source of data for the calibration of traditional hydrological models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The present effect of watershed subdivision on simulated water balance components using the thoroughly tested Soil and Water Assessment Tool (SWAT) model has been evaluated for the Nagwan watershed in eastern India. Observed meteorological and hydrological data (daily rainfall, temperature, relative humidity and runoff) for the years 1995 to 1998 were collected and used. The watershed and sub‐watershed boundaries, slope and soil texture maps were generated using a geographical information system. A supervised classification method was used for land‐use/cover classification from satellite imagery of 1996. In order to study the effect of watershed subdivision, the watershed was spatially defined into three decomposition schemes, namely a single watershed, and 12 and 22 sub‐watersheds. The simulation using the SWAT model was done for a period of 4 years (1995 to 1998). Results of the study showed a perfect water balance for the Nagwan watershed under all of the decomposition schemes. Results also revealed that the number and size of sub‐watersheds do not appreciably affect surface runoff. Except for runoff, there was a marked variation in the individual components of the water balance under the three decomposition schemes. Though the runoff component of the water balance showed negligible variation among the three cases, variations were noticed in the other components: evapotranspiration (5 to 48%), percolation (2 to 26%) and soil water content (0·30 to 22%). Thus, based on this study, it is concluded that watershed subdivision has a significant effect on the water balance components. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Lake Tana Basin is of significant importance to Ethiopia concerning water resources aspects and the ecological balance of the area. Many years of mismanagement, wetland losses due to urban encroachment and population growth, and droughts are causing its rapid deterioration. The main objective of this study was to assess the performance and applicability of the soil water assessment tool (SWAT) model for prediction of streamflow in the Lake Tana Basin, so that the influence of topography, land use, soil and climatic condition on the hydrology of Lake Tana Basin can be well examined. The physically based SWAT model was calibrated and validated for four tributaries of Lake Tana. Sequential uncertainty fitting (SUFI‐2), parameter solution (ParaSol) and generalized likelihood uncertainty estimation (GLUE) calibration and uncertainty analysis methods were compared and used for the set‐up of the SWAT model. The model evaluation statistics for streamflows prediction shows that there is a good agreement between the measured and simulated flows that was verified by coefficients of determination and Nash Sutcliffe efficiency greater than 0·5. The hydrological water balance analysis of the basin indicated that baseflow is an important component of the total discharge within the study area that contributes more than the surface runoff. More than 60% of losses in the watershed are through evapotranspiration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
《水文科学杂志》2013,58(6):953-970
Abstract

The 5000 km2 topographically closed Estancia basin in central New Mexico has been the focus of several palaeoclimatic studies based on changes in the level of late Pleistocene Lake Estancia. A large, unknown volume of surface runoff and groundwater from adjacent mountains contributed to the hydrological balance during highstands and lowstands. The US Department of Agriculture hydrological model SWAT (Soil and Water Assessment Tool) and the US Geological Survey groundwater flow model MODFLOW, with the LAK2 package, were used in this study to estimate runoff and water balance under present climate. A Geographic Information Systems (GIS) interface was used for SWAT, digitized data were applied for soils and vegetation, and limited streamflow data were used to obtain an approximate calibration for the model. Simulated streamflow is generally within 30% of observed values, and simulated runoff for the entire basin is about 8% of the annual inflow volume needed to support lowstands of the former Lake Estancia. Results from the combined models suggest application to other palaeoclimate investigations in semiarid lake basins.  相似文献   

6.
To analyse the long‐term water balance of the Yellow River basin, a new hydrological model was developed and applied to the source area of the basin. The analysis involved 41 years (1960–2000) of daily observation data from 16 meteorological stations. The model is composed of the following three sub‐models: a heat balance model, a runoff formation model and a river‐routing network model. To understand the heat and water balances more precisely, the original model was modified as follows. First, the land surface was classified into five types (bare, grassland, forest, irrigation area and water surface) using a high‐resolution land‐use map. Potential evaporation was then calculated using land‐surface temperatures estimated by the heat balance model. The maximum evapotranspiration of each land surface was calculated from potential evaporation using functions of the leaf area index (LAI). Finally, actual evapotranspiration was estimated by regulating the maximum evapotranspiration using functions of soil moisture content. The river discharge estimated by the model agreed well with the observed data in most years. However, relatively large errors, which may have been caused by the overestimation of surface flow, appeared in some summer periods. The rapid decrease of river discharge in recent years in the source area of the Yellow River basin depended primarily on the decrease in precipitation. Furthermore, the results suggested that the long‐term water balance in the source area of the Yellow River basin is influenced by land‐use changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Understanding the principal causes and possible solutions for groundwater depletion in India is important for its water security, especially as it relates to agriculture. A study was conducted in an agricultural watershed in Andhra Pradesh, India to assess the impacts on groundwater of current and alternative agricultural management. Hydrological simulations were used as follows: (1) to evaluate the recharge benefits of water‐harvesting tillage through a modified Soil and Water Assessment Tool (SWAT) model and (2) to predict the groundwater response to changing extent and irrigation management of rice growing areas. The Green–Ampt infiltration routine was modified in SWAT was modified to represent water‐harvesting tillage using maximum depression storage parameter. Water‐harvesting tillage in rainfed croplands was shown to increase basin‐scale groundwater recharge by 3% and decrease run‐off by 43% compared with existing conventional tillage. The groundwater balance (recharge minus irrigation withdrawals), negative 11 mm/year under existing management changed to positive (18–45 mm/year) when rice growing areas or irrigation depths were reduced. Groundwater balance was sensitive to changes in rice cropland management, meaning even small changes in rice cropland management had large impacts on groundwater availability. The modified SWAT was capable of representing tillage management of varying maximum depression storage, and tillage for water‐harvesting was shown to be a potentially important strategy for producers to enhance infiltration and groundwater recharge, especially in semi‐arid regions where rainfall may be becoming increasingly variable. This enhanced SWAT could be used to evaluate the landscape‐scale impacts of alternative tillage management in other regions that are working to develop strategies for reducing groundwater depletion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Heihe river basin, the second largest inland river basin in China, has attracted more attention in China due to the ever increasing water resources and eco‐environmental problems. In this article, SWAT (Soil and Water Assessment Tool; http://www.brc.tamus.edu/swat/ ) model was applied to upper reaches of the basin for better understanding of the hydrological process over the watershed. Parameter uncertainty and its contribution on model simulation are the main foci. In model calibration, the aggregate parameters instead of the original parameters in SWAT model were used to reduce the computing effort. The Bayesian approach was employed for parameter estimation and uncertainty analysis because its posterior distribution provides not only parameter estimation but also uncertainty analysis without normality assumption. The results indicated that: (1) SWAT model performs satisfactorily in this watershed as a whole, although some low and high flows were under‐ or overestimated, particularly in dry (e.g. 1991) and wet (e.g. 1996) years; (2) all calibrated parameters were not normally distributed (essentially positively or negatively skewed) and the parameter uncertainties were relatively small; and (3) the contributions of parameter uncertainty on model simulation uncertainty were relatively small. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Uncertainty is inherent in modelling studies. However, the quantification of uncertainties associated with a model is a challenging task, and hence, such studies are somewhat limited. As distributed or semi‐distributed hydrological models are being increasingly used these days to simulate hydrological processes, it is vital that these models should be equipped with robust calibration and uncertainty analysis techniques. The goal of the present study was to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for simulating streamflow in a river basin of Eastern India, and to evaluate the performance of salient optimization techniques in quantifying uncertainties. The SWAT model for the study basin was developed and calibrated using Parameter Solution (ParaSol), Sequential Uncertainty Fitting Algorithm (SUFI‐2) and Generalized Likelihood Uncertainty Estimation (GLUE) optimization techniques. The daily observed streamflow data from 1998 to 2003 were used for model calibration, and those for 2004–2005 were used for model validation. Modelling results indicated that all the three techniques invariably yield better results for the monthly time step than for the daily time step during both calibration and validation. The model performances for the daily streamflow simulation using ParaSol and SUFI‐2 during calibration are reasonably good with a Nash–Sutcliffe efficiency and mean absolute error (MAE) of 0.88 and 9.70 m3/s for ParaSol, and 0.86 and 10.07 m3/s for SUFI‐2, respectively. The simulation results of GLUE revealed that the model simulates daily streamflow during calibration with the highest accuracy in the case of GLUE (R2 = 0.88, MAE = 9.56 m3/s and root mean square error = 19.70 m3/s). The results of uncertainty analyses by SUFI‐2 and GLUE were compared in terms of parameter uncertainty. It was found that SUFI‐2 is capable of estimating uncertainties in complex hydrological models like SWAT, but it warrants sound knowledge of the parameters and their effects on the model output. On the other hand, GLUE predicts more reliable uncertainty ranges (R‐factor = 0.52 for daily calibration and 0.48 for validation) compared to SUFI‐2 (R‐factor = 0.59 for daily calibration and 0.55 for validation), though it is computationally demanding. Although both SUFI‐2 and GLUE appear to be promising techniques for the uncertainty analysis of modelling results, more and more studies in this direction are required under varying agro‐climatic conditions for assessing their generic capability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

12.
The evaluation of climate change and its side effects on the hydrological processes of the basin can increasingly help in dealing with the challenges that water resource managers and planners face in future courses. These side effects are investigated using the simulation of hydrological processes with the help of physical rainfall‐runoff model. Hydrological models provide a framework for examining the relationship between climate and water resources. This research aims at the investigation of the effect of climate change on the runoff of Gharesou, which is one of the main branches of the “Karkheh” River in Iran during the periods 2040–2069. To achieve this, the distributed hydrological model Soil and Water Assessment Tool (SWAT) – a model that is sensitive to the changes in land, water, and climate – has been used with the aim of evaluating the impact of climate change on the hydrology of the Gharesou Basin. For this reason, first, the continuous distributed model of rainfall‐runoff SWAT for the period 1971–2000 has been calibrated and validated. Next, with the aim of evaluating the impact of climate change and global warming on the basin hydrology for the period 2040–2069, HadCM3‐AR4 global climate model data under the A2 scenario – from the SRES scenario set‐haves been downscaled. Eventually, the downscaled climate data haves been introduced in the SWAT model, and the future runoff changes have been studied. The results showed that the temperature increases in most of the months, and the precipitation rate exhibits a change in the range of ±30%. Moreover, the produced runoff in this period changes from ?90 to 120% during different months.  相似文献   

13.
Permafrost degradation in the peat‐rich southern fringe of the discontinuous permafrost zone is catalysing substantial changes to land cover with expansion of permafrost‐free wetlands (bogs and fens) and shrinkage of forest‐dominated permafrost peat plateaux. Predicting discharge from headwater basins in this region depends upon understanding and numerically representing the interactions between storage and discharge within and between the major land cover types and how these interactions are changing. To better understand the implications of advanced permafrost thaw‐induced land cover change on wetland discharge, with all landscape features capable of contributing to drainage networks, the hydrological behaviour of a channel fen sub‐basin in the headwaters of Scotty Creek, Northwest Territories, Canada, dominated by peat plateau–bog complexes, was modelled using the Cold Regions Hydrological Modelling platform for the period of 2009 to 2015. The model construction was based on field water balance observations, and performance was deemed adequate when evaluated against measured water balance components. A sensitivity analysis was conducted to assess the impact of progressive permafrost loss on discharge from the sub‐basin, in which all units of the sub‐basin have the potential to contribute to the drainage network, by incrementally reducing the ratio of wetland to plateau in the modelled sub‐basin. Simulated reductions in permafrost extent decreased total annual discharge from the channel fen by 2.5% for every 10% decrease in permafrost area due to increased surface storage capacity, reduced run‐off efficiency, and increased landscape evapotranspiration. Runoff ratios for the fen hydrological response unit dropped from 0.54 to 0.48 after the simulated 50% permafrost area loss with a substantial reduction of 0.47 to 0.31 during the snowmelt season. The reduction in peat plateau area resulted in decreased seasonal variability in discharge due to changes in the flow path routing, with amplified low flows associated with small increases in subsurface discharge, and decreased peak discharge with large reductions in surface run‐off.  相似文献   

14.
Soils affect the distribution of hydrological processes by partitioning precipitation into different components of the water balance. Therefore, understanding soil-water dynamics at a catchment scale remains imperative to future water resource management. In this study, the value of hydropedological insights was examined to calibrate a processes-based model. Soil morphology was used as soft data to assist in the calibration of the Soil Water Assessment Tool (SWAT+) model at five different catchment scales (48, 56, 174, 674, and 2421 km2) in the Sabie River catchment, South Africa. The aim of this study was to calibrate the SWAT+ model to accurately simulate long-term monthly streamflow predictions as well as to reflect internal soil hydrological processes using a procedure focusing on hydropedology as a calibration tool in a multigauge system. Results indicated that calibration improved streamflow predictions where R2 improved by 2%–8%. Nash-Sutcliffe Efficiency (NSE) improved from negative correlations to values exceeding 0.5 at four of the five catchment scales compared to the uncalibrated model. Results confirm that soil mapping units can be calibrated individually within SWAT+ to improve the representation of hydrological processes. Particularly, the spatial linkage between hydropedology and hydrological processes, which is captured within the soil map of the catchment, can be adequately reflected within the model simulations after calibration. This research will lead to an improved understanding of hydropedology as soft data to improve hydrological modelling accuracy.  相似文献   

15.
Hydrological models at a monthly time‐scale are important tools for hydrological analysis, such as in impact assessment of climate change and regional water resources planning. Traditionally, monthly models adopt a conceptual, lumped‐parameter approach and cannot account for spatial variations of basin characteristics and climatic inputs. A large requirement for data often severely limits the utility of physically based, distributed‐parameter models. Based on the variable‐source‐area concept, we considered basin topography and rainfall to be two major factors whose spatial variations play a dominant role in runoff generation and developed a monthly model that is able to account for their influences in the spatial and temporal dynamics of water balance. As a hybrid of the Xinanjiang model and TOPMODEL, the new model is constructed by innovatively making use of the highly acclaimed simulation techniques in the two existing models. A major contribution of this model development study is to adopt the technique of implicit representation of soil moisture characteristics in the Xinanjiang model and use the TOPMODEL concept to integrate terrain variations into runoff simulation. Specifically, the TOPMODEL topographic index ln(a/tanβ) is converted into an index of relative difficulty in runoff generation (IRDG) and then the cumulative frequency distribution of IRDG is used to substitute the parabolic curve, which represents the spatial variation of soil storage capacity in the Xinanjiang model. Digital elevation model data play a key role in the modelling procedures on a geographical information system platform, including basin segmentation, estimation of rainfall for each sub‐basin and computation of terrain characteristics. Other monthly data for model calibration and validation are rainfall, pan evaporation and runoff. The new model has only three parameters to be estimated, i.e. watershed‐average field capacity WM, pan coefficient η and runoff generation coefficient α. Sensitivity analysis demonstrates that runoff is least sensitive to WM and, therefore, it can be determined by a prior estimation based on the climate and soil properties of the study basin. The other two parameters can be determined using optimization methods. Model testing was carried out in a number of nested sub‐basins of two watersheds (Yuanjiang River and Dongjiang River) in the humid region in central and southern China. Simulation results show that the model is capable of describing spatial and temporal variations of water balance components, including soil moisture content, evapotranspiration and runoff, over the watershed. With a minimal requirement for input data and parameterization, this terrain‐based distributed model is a valuable contribution to the ever‐advancing technology of hydrological modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Water tanks as traditional rainwater harvesting systems for agriculture are widely distributed in South India. They have a strong impact on hydrological processes, affecting streamflow in rivers as well as evapotranspiration. This study aims at an accurate representation of water harvesting systems in a hydrologic model to improve model performance and assessment of the catchment water balance. To this end, spatio-temporal variations of water bodies between the years 2016 and 2018 and the months of January and May 2017 were derived from Sentinel-2 satellite data to parameterize the water tanks (reservoir) parameters in the Soil and Water Assessment Tool (SWAT+) model of the Adyar basin, Chennai, India. Approximately 16% of the basin is covered by water tanks. The initial model performance was evaluated for two model setups, with and without water tanks. The best model run was selected with a multi-metric approach comparing observed and modelled monthly streamflow for 5000 model runs. The final model evaluation was carried out by comparing estimated water body areas by the model and remote sensing observations for January to May 2017. The results showed that representing water tanks in the hydrologic model led to an improvement in the representation of the seasonal variations of streamflow for the whole simulation period (2004–2018). The model performance was classified as good and very good for the calibration (2004–2011) and validation (2012–2018) periods as NSE varies between 0.67 and 0.85, KGE varies between 0.65 and 0.72, PBIAS varies between −24.1 and −23.6, and RSR varies between 0.57 and 0.39. The best fit was shown for the high and middle flow segments of the hydrograph where the coefficient of determination (R2) ranges from 0.81 to 0.97 and 0.75 to 0.81, respectively. The monthly variation of water body areas in 2017 estimated by the hydrologic model was consistent with changes observed in remote sensing surveys. In summary, the water tank parametrization using remote sensing techniques enhanced the hydrologic model's efficiency and applicability for future studies.  相似文献   

17.
Watershed scale hydrological and biogeochemical models rely on the correct spatial‐temporal prediction of processes governing water and contaminant movement. The Soil and Water Assessment Tool (SWAT) model, one of the most commonly used watershed scale models, uses the popular curve number (CN) method to determine the respective amounts of infiltration and surface runoff. Although appropriate for flood forecasting in temperate climates, the CN method has been shown to be less than ideal in many situations (e.g. monsoonal climates and areas dominated by variable source area hydrology). The CN model is based on the assumption that there is a unique relationship between the average moisture content and the CN for all hydrologic response units (HRUs), and that the moisture content distribution is similar for each runoff event, which is not the case in many regions. Presented here is a physically based water balance that was coded in the SWAT model to replace the CN method of runoff generation. To compare this new water balance SWAT (SWAT‐WB) to the original CN‐based SWAT (SWAT‐CN), two watersheds were initialized; one in the headwaters of the Blue Nile in Ethiopia and one in the Catskill Mountains of New York. In the Ethiopian watershed, streamflow predictions were better using SWAT‐WB than SWAT‐CN [Nash–Sutcliffe efficiencies (NSE) of 0·79 and 0·67, respectively]. In the temperate Catskills, SWAT‐WB and SWAT‐CN predictions were approximately equivalent (NSE > 0·70). The spatial distribution of runoff‐generating areas differed greatly between the two models, with SWAT‐WB reflecting the topographical controls imposed on the model. Results show that a water balance provides results equal to or better than the CN, but with a more physically based approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Highland agriculture is intensifying rapidly in South‐East Asia, leading to alarmingly high applications of agrochemicals. Understanding the fate of these contaminants requires carefully planned monitoring programmes and, in most cases, accurate simulation of hydrological pathways into and through water bodies. We simulate run‐off in a steep mountainous catchment in tropical South‐East Asia. To overcome calibration difficulties related to the mountainous topography, we introduce a new calibration method, named A Nash–Sutcliffe Efficiency Likelihood Match (ANSELM), that allows the assignment of optimal parameters to different hydrological response units in simulations of stream discharge with the Soil and Water Assessment Tool (SWAT) hydrological model. ANSELM performed better than the Parasol calibration tool built into SWAT in terms of model efficiency and computation time. In our simulation, the most sensitive model parameters were those related to base flow generation, surface run‐off generation, flow routing and soil moisture change. The coupling of SWAT with ANSELM yielded reasonable simulations of both wet‐season and dry‐season storm hydrographs. Nash–Sutcliffe model efficiencies for daily stream flow during two validation years were 0.77 and 0.87. These values are in the upper range or even higher than those reported for other SWAT model applications in temperate or tropical regions. The different flow components were realistically simulated by SWAT, and showed a similar behaviour in all the study years, despite inter‐annual climatic differences. The realistic partitioning of total stream flow into its contributing components will be an important factor for using this hydrological model to simulate solute transport in the future. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding the impacts of land‐use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land‐use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and Water Assessment Tool (AVSWAT2000). Model calibration and uncertainty analysis were performed with sequential uncertainty fitting (SUFI‐2). Simulation results from January 1998 to December 2002 were used for parameter calibration, and then the model was validated for the period of January 2003 to December 2004. The predicted monthly streamflow matched the observed values: during calibration the correlation coefficient was 0·86 and the Nash–Sutcliffe coefficient 0·79, compared with 0·80 and 0·79, respectively, during validation. The model was used to simulate the main components of the hydrological cycle, in order to study the effects of land‐use changes in 1967, 1994 and 2007. The study reveals that during 1967 a 34·5% decrease of grassland with concurrent increases of shrubland (13·9%), rain‐fed agriculture (12·1%), bare ground (5·5%) irrigated agriculture (2·2%), and urban area (0·7%) led to a 33% increase in the amount of surface runoff and a 22% decrease in the groundwater recharge. Furthermore, the area of sub‐basins that was influenced by high runoff (14–28 mm) increased. The results indicate that the hydrological response to overgrazing and the replacing of rangelands (grassland and shrubland) with rain‐fed agriculture and bare ground (badlands) is nonlinear and exhibits a threshold effect. The runoff rises dramatically when more than 60% of the rangeland is removed. For groundwater this threshold lies at an 80% decrease in rangeland. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

In this study, a hydrological model and spatial technologies have been employed to assess water availability in the Mat River basin, southern Mizoram, India. Furthermore, the results obtained from the SWAT (Soil and Water Assessment Tool) model, satellite data and GIS tools were utilized to identify the hydropower potential in the basin. Thirty three sites with hydropower potential were identified within 147 km2 of the Mat River basin. A total of 3039, 1127 and 805 kW can be harnessed with 50, 75 and 90% dependability, respectively. The study revealed that the hydropower potential of a river basin can be correctly assessed by employing a digital elevation model, stream network data and a hydrological model, such as the SWAT model, within a GIS framework.
Editor D. Koutsoyiannis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号