首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In the paper that is the foundation for this study, VanderKwaak and Loague (2001. Water Resources Research 37 : 999–1013) reported a demonstration of a fully coupled comprehensive physics‐based hydrologic‐response model, InHM (Integrated Hydrology Model), for two rainfall‐runoff events from the small rangeland catchment known as R‐5. The InHM simulations reported herein address (in three phases) limitations in the VanderKwaak and Loague (2001. Water Resources Research 37 : 999–1013) simulations. In Phase I, a new finite‐element mesh was selected to represent R‐5. In Phase II, with the new mesh in place, evaporation was considered for the R‐5 events. In Phase III, with the new mesh in place and evaporation considered, the geology of R‐5 was approximated. Each phase, compared with the results reported by VanderKwaak and Loague (2001. Water Resources Research 37 : 999–1013), shows a change in the simulated near‐surface response. The performance of InHM for 15 R‐5 events is also reported herein. The results from two stages of model calibration are presented. The uncertainty in initial soil‐water content estimates for event‐based simulation is shown to be a major limitation for physics‐based models. The performance of InHM, relative to past event‐based simulation efforts with a quasi‐physically based rainfall‐runoff model, is better for both peak stormflow and the time to peak stormflow, but worse for stormflow depth. The InHM simulations reported here set the stage for continuous simulation of near‐surface response for the R‐5 catchment with InHM. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In the work reported here the comprehensive physics‐based Integrated Hydrology Model (InHM) was employed to conduct both three‐ and two‐dimensional (3D and 2D) hydrologic‐response simulations for the small upland catchment known as C3 (located within the H. J. Andrews Experimental Forest in Oregon). Results from the 3D simulations for the steep unchannelled C3 (i) identify subsurface stormflow as the dominant hydrologic‐response mechanism and (ii) show the effect of the down‐gradient forest road on both the surface and subsurface flow systems. Comparison of the 3D results with the 2D results clearly illustrates the importance of convergent subsurface flow (e.g. greater pore‐water pressures in the hollow of the catchment for the 3D scenario). A simple infinite‐slope model, driven by subsurface pore‐water pressures generated from the 3D and 2D hydrologic‐response simulations, was employed to estimate slope stability along the long‐profile of the C3 hollow axis. As expected, the likelihood of slope failure is underestimated for the lower pore pressures from the 2D hydrologic‐response simulation compared, in a relative sense, to the higher pore pressures from the 3D hydrologic response simulation. The effort reported herein provides a firm quantitative foundation for generalizing the effects that forest roads can have on near‐surface hydrologic response and slope stability at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Column and field experiments have shown that the hydrologic response to increases in rainfall rates can be more rapid than expected from simple estimates. Physics‐based hydrologic response simulation, with the Integrated Hydrology Model (InHM), is used here to investigate rapid hydrologic response, within the variably saturated near surface, to temporal variations in applied flux at the surface boundary. The factors controlling the speed of wetting front propagation are discussed within the Darcy–Buckingham conceptual framework, including kinematic wave approximations. The Coos Bay boundary‐value problem is employed to examine simulated discharge, pressure head, and saturation responses to a large increase in applied surface flux. The results presented here suggest that physics‐based simulations are capable of representing rapid hydrologic response within the variably saturated near surface. The new InHM simulations indicate that the temporal discretization and measurement precision needed to capture the rapid subsurface response to a spike increase in surface flux, necessary for both data‐based analyses and evaluation of physics‐based models, are smaller than the capabilities of the instrumentation deployed at the Coos Bay experimental catchment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Synthetic data have long been employed in hydrology for model development and testing. The objective of this study was to generate a synthetic dataset of hydrologic response with higher spatial and temporal resolution than could presently be obtained in the field, spanning a longer period than the typical duration of monitoring campaigns in experimental catchments. The synthetic dataset was generated for a rangeland catchment with the Integrated Hydrology Model (InHM), and is presented for future use by the community. The InHM boundary‐value problem is based upon the previously reported hypothetical reality of Tarrawarra‐like hydrologic response. Whereas the emphasis in developing the hypothetical reality was on parameterising InHM to reproduce observations from the Tarrawarra catchment, the emphasis in generating the synthetic dataset is on developing an internally valid hydrologic‐response dataset that extends well beyond the period of observations at Tarrawarra. The synthetic dataset spans 11 years of continuous forcing and response data (e.g. integrated response, distributed fluxes, state variable dynamics). The dataset should be useful for a wide range of problems including evaluation of simple rainfall runoff modelling techniques, design of measurement networks, development of data‐assimilation algorithms, and studies on information theory. The dataset is available at: ftp://pangea.stanford.edu/pub/loague/ . Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This study presents time‐varying suspended sediment‐discharge rating curves to model suspended‐sediment concentrations (SSCs) under alternative climate scenarios. The proposed models account for hysteresis at multiple time scales, with particular attention given to systematic shifts in sediment transport following large floods (long‐term hysteresis). A series of nested formulations are tested to evaluate the elements embedded in the proposed models in a case study watershed that supplies drinking water to New York City. To maximize available data for model development, a dynamic regression model is used to estimate SSC based on denser records of turbidity, where the parameters of this regression are allowed to vary over time to account for potential changes in the turbidity‐SSC relationship. After validating the proposed rating curves, we compare simulations of SSC among a subset of models in a climate change impact assessment using an ensemble of flow simulations generated using a stochastic weather generator and hydrologic model. We also examine SSC estimates under synthetic floods generated using a peaks‐over‐threshold model. Our results indicate that estimates of extreme SSC under new climate and hydrologic scenarios can vary widely depending on the selected model and may be significantly underestimated if long‐term hysteresis is ignored when simulating impacts under sequences of large storm event. Based on the climate change scenarios explored here, average annual maximum SSC could increase by as much as 2.45 times over historical values.  相似文献   

6.
Distributed hydrologic models capable of simulating fully‐coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first‐order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface‐subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first‐order exchange coefficients at a well‐characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first‐order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first‐order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept‐development simulations to examine real‐world situations where the surface‐subsurface exchange is impaired. While the parameters comprising the first‐order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first‐order exchange coefficient approach can be consistent with a physics‐based framework. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper provides a procedure for evaluating model performance where model predictions and observations are given as time series data. The procedure focuses on the analysis of error time series by graphing them, summarizing them, and predicting their variability through available information (recalibration). We analysed two rainfall–runoff events from the R‐5 data set, and evaluated 12 distinct model simulation scenarios for these events, of which 10 were conducted with the quasi‐physically‐based rainfall–runoff model (QPBRRM) and two with the integrated hydrology model (InHM). The QPBRRM simulation scenarios differ in their representation of saturated hydraulic conductivity. Two InHM simulation scenarios differ with respect to the inclusion of the roads at R‐5. The two models, QPBRRM and InHM, differ strongly in the complexity and number of processes included. For all model simulations we found that errors could be predicted fairly well to very well, based on model output, or based on smooth functions of lagged rainfall data. The errors remaining after recalibration are much more alike in terms of variability than those without recalibration. In this paper, recalibration is not meant to fix models, but merely as a diagnostic tool that exhibits the magnitude and direction of model errors and indicates whether these model errors are related to model inputs such as rainfall. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Assessing hydrologically driven erosion at regional scales from a process‐based perspective presents a significant challenge. Most regional‐scale erosion assessments are based upon a simple steady‐state hydrology foundation. For this study, the sediment transport version of the physics‐based Integrated Hydrology Model (InHM), excited by synthetically generated rainfall, was employed to assess long‐term hydrologically driven erosion for a regional‐scale island boundary‐value problem. The spatiotemporal dynamics of runoff generation, erosion, and deposition are illustrated through saturation, water depth, velocity, and sediment concentration results. The simulations demonstrate that process‐based assessment for concept development is both feasible and tractable at regional spatial and human time scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Climatic changes have altered surface water regimes worldwide, and climate projections suggest that such alterations will continue. To inform management decisions, climate projections must be paired with hydrologic models to develop quantitative estimates of watershed scale water regime changes. Such modeling approaches often involve downscaling climate model outputs, which are generally presented at coarse spatial scales. In this study, Coupled Model Intercomparison Project Phase 5 climate model projections were analyzed to determine models representing severe and conservative climate scenarios for the study watershed. Based on temperature and precipitation projections, output from GFDL‐ESM2G (representative concentration pathway 2.6) and MIROC‐ESM (representative concentration pathway 8.5) were selected to represent conservative (ΔC) and severe (ΔS) change scenarios, respectively. Climate data were used as forcing for the soil and water assessment tool to analyze the potential effects of climate change on hydrologic processes in a mixed‐use watershed in central Missouri, USA. Results showed annual streamflow decreases ranging from ?5.9% to ?26.8% and evapotranspiration (ET) increases ranging from +7.2% to +19.4%. During the mid‐21st century, sizeable decreases to summer streamflow were observed under both scenarios, along with large increases of fall, spring, and summer ET under ΔS. During the late 21st century period, large decreases of summer streamflow under both scenarios, and large increases to spring (ΔS), fall (ΔS) and summer (ΔC) ET were observed. This study demonstrated the sensitivity of a Midwestern watershed to future climatic changes utilizing projections from Coupled Model Intercomparison Project Phase 5 models and presented an approach that used multiple climate model outputs to characterize potential watershed scale climate impacts.  相似文献   

10.
11.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, the Precipitation‐Runoff Modelling System (PRMS) was used to simulate changes in surface‐water depression storage in the 1,126‐km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface‐water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface‐water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application‐ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface‐water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface‐water depression storage in the calibration procedure resulted in accurate changes in surface‐water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface‐storage to accurately parameterize surface‐water depression storage within the USGS NHM.  相似文献   

13.
Forest management practices often result in significant changes to hydrologic and geomorphic responses at or near the earth's surface. A well‐known, but not fully tested, hypothesis in hillslope hydrology[sol ]geomorphology is that a near‐surface permeability contrast, caused by the surface compaction associated with forest roads, can result in diverted subsurface flow paths that produce increased up‐slope pore pressures and slope failure. The forest road focused on in this study is located in a steep forested, zero‐order catchment within the H. J. Andrews Experimental Forest (Oregon). A three‐phase modelling effort was employed to test the aforementioned hypothesis: (i) two‐dimensional (vertical slice), steady‐state, heterogeneous, saturated subsurface flow simulations at the watershed scale for establishing the boundary conditions for the catchment‐scale boundary‐value problem in (ii); (ii) two‐dimensional (vertical slice), transient, heterogeneous, variably saturated subsurface flow simulations at the catchment scale for estimating near‐surface hydrologic response and pore pressure distributions; and (iii) slope stability analyses, using the infinite slope approach, driven by the pore pressure distributions simulated in (ii), for assessing the impact of the forest road. Both observed and hypothetical rainfall events are used to drive the catchment‐scale simulations. The results reported here support the hypothesis that a forest road can have an effect on slope stability. The permeability contrast associated with the forest road in this study led to a simulated altering of slope‐parallel subsurface flow with increased pore pressures up‐slope of the road and, for a large rainfall event, a slope failure prediction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrologic models have increasingly been used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models are also plagued by uncertainty, however, and parameter equifinality is a common concern. Physically‐based, spatially‐distributed hydrologic models must therefore be tested with high‐quality experimental data describing a multitude of concurrent internal catchment processes under a range of hydrologic regimes. This study takes a novel approach by not only examining the ability of a pre‐calibrated model to realistically simulate watershed outlet flows over a four year period, but a multitude of spatially‐extensive, internal catchment process observations not previously evaluated, including: continuous groundwater dynamics, instantaneous stream and road network flows, and accumulation and melt period spatial snow distributions. Many hydrologic model evaluations are only on the comparison of predicted and observed discharge at a catchment outlet and remain in the ‘infant stage’ in terms of model testing. This study, on the other hand, tests the internal spatial predictions of a distributed model with a range of field observations over a wide range of hydroclimatic conditions. Nash‐Sutcliffe model efficiency was improved over prior evaluations due to continuing efforts in improving the quality of meteorological data collection. Road and stream network flows were generally well simulated for a range of hydrologic conditions, and snowpack spatial distributions were well simulated for one of two years examined. The spatial variability of groundwater dynamics was effectively simulated, except at locations where strong stream–groundwater interactions exist. Model simulations overall were quite successful in realistically simulating the spatiotemporal variability of internal catchment processes in the watershed, but the premature onset of simulated snowmelt for one of the simulation years has prompted further work in model development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Simulation of watershed scale hydrologic and water quality processes is important for watershed assessments. Proper characterization of the accuracy of these simulations, particularly in cases with limited observed data, is critical. The Soil & Water Assessment Tool (SWAT) is frequently used for watershed scale simulation. The accuracy of the model was assessed by extrapolating calibration results from a well studied Coastal Plain watershed in Southwest Georgia, USA, to watersheds within the same geographic region without further calibration. SWAT was calibrated and validated on a 16.7‐km2 subwatershed within the Little River Experimental Watershed by varying six model parameters. The optimized parameter set was then applied to a watershed of similar land use and soils, a smaller watershed with different land use and soils and three larger watersheds within the same drainage system without further calibration. Simulation results with percent bias (PB) ±15% ≤ PB < ±25% and Nash–Sutcliffe efficiency (NSE) 0.50 < NSE ≤ 0.65 were considered to be satisfactory, whereas those with PB < ±10% and 0.75 < NSE ≤ 1.00 were considered very good. With these criteria, simulation results for the five non‐calibration watersheds were satisfactory to very good. Differences across watersheds were attributed to differences in soils, land use, and surficial aquifer characteristics. These results indicate that SWAT can be a useful tool for predicting streamflow for ungauged watersheds with similar physical characteristics to the calibration watershed studied here and provide an indication of the accuracy of hydrologic simulations for ungauged watersheds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Groundwater recharge and mounding of water‐table is a complex phenomenon involving time‐ and space‐dependent hydrologic processes. The effect of long‐term groundwater mounding in the aquifer depends on soil, aquifer geometry and the area contributing to recharge. In this paper, a GIS‐based spatio‐temporal algorithm has been developed for the groundwater mound dynamics to estimate the potential rise in the water‐table and groundwater volume balance residual in an unconfined aquifer. The recharge and mound dynamics as predicted using the methodology recommended here were compared with those using the Hantush equation, and the differences were quite significant. The significance of the study is to assess the effectiveness of the basin in terms of its hydrologic and hydraulic properties for sustainable management of groundwater recharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The need for accurate hydrologic analysis and rainfall–runoff modelling tools has been rapidly increasing because of the growing complexity of operational hydrologic and hydraulic problems associated with population growth, rapid urbanization and expansion of agricultural activities. Given the recent advances in remote sensing of physiographic features and the availability of near real‐time precipitation products, rainfall–runoff models are expected to predict runoff more accurately. In this study, we compare the performance and implementation requirements of two rainfall–runoff models for a semi‐urbanized watershed. One is a semi‐distributed conceptual model, the Hydrologic Engineering Center‐Hydrologic Modelling System (HEC‐HMS). The other is a physically based, distributed‐parameter hydrologic model, the Gridded Surface Subsurface Hydrologic Analysis (GSSHA). Four flood events that took place on the Leon Creek watershed, a sub‐watershed of the San Antonio River basin in Texas, were used in this study. The two models were driven by the Multisensor Precipitation Estimator radar products. One event (in 2007) was used for HEC‐HMS and GSSHA calibrations. Two events (in 2004 and 2007) were used for further calibration of HEC‐HMS. Three events (in 2002, 2004 and 2010) were used for model validation. In general, the physically based, distributed‐parameter model performed better than the conceptual model and required less calibration. The two models were prepared with the same minimum required input data, and the effort required to build the two models did not differ substantially. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The objective of this work is to demonstrate the potential of using passive microwave data to monitor flood and discharge conditions and to infer watershed hydraulic and hydrologic parameters. The case study is the major flood in Iowa in summer 2008. A new Polarisation Ratio Variation Index (PRVI) was developed based on a multi‐temporal analysis of 37 GHz satellite imagery from the Advanced Microwave Scanning Radiometer (AMSR‐E) to calculate and detect anomalies in soil moisture and/or inundated areas. The Robust Satellite Technique (RST) which is a change detection approach based on the analysis of historical satellite records was adopted. A rating curve has been developed to assess the relationship between PRVI values and discharge observations downstream. A time‐lag term has been introduced and adjusted to account for the changing delay between PRVI and streamflow. Moreover, the Kalman filter has been used to update the rating curve parameters in near real time. The temporal variability of the b exponent in the rating curve formula shows that it converges toward a constant value. A consistent 21‐day time lag, very close to an estimate of the time of concentration, was obtained. The agreement between observed discharge downstream and estimated discharge with and without parameters adjustment was 65 and 95%, respectively. This demonstrates the interesting role that passive microwave can play in monitoring flooding and wetness conditions and estimating key hydrologic parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher‐resolution data sources are available, but they are associated with greater computational requirements and expertise. Here, we investigate whether the Multisensor Precipitation Estimator (MPE or Stage IV Next‐Generation Radar) data improve the accuracy of streamflow simulations using the Soil and Water Assessment Tool (SWAT), compared with rain gauge data. Simulated flows from 2002 to 2010 at five timesteps were compared with observed flows for four nested subwatersheds of the Neuse River basin in North Carolina (21‐, 203‐, 2979‐, and 10 100‐km2 watershed area), using a multi‐objective function, informal likelihood‐weighted calibration approach. Across watersheds and timesteps, total gauge precipitation was greater than radar precipitation, but radar data showed a conditional bias of higher rainfall estimates during large events (>25–50 mm/day). Model parameterization differed between calibrations with the two datasets, despite the fact that all watershed characteristics were the same across simulation scenarios. This underscores the importance of linking calibration parameters to realistic processes. SWAT simulations with both datasets underestimated median and low flows, whereas radar‐based simulations were more accurate than gauge‐based simulations for high flows. At coarser timesteps, differences were less pronounced. Our results suggest that modelling efforts in watersheds with poor rain gauge coverage can be improved with MPE radar data, especially at short timesteps. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号