首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of surface melt patterns and the Indian summer monsoon (ISM) is examined on the varying contributions of end member (snow, glacier ice, and rain) to proglacial streamflow during the ablation period (June–October) in the Chhota Shigri glaciated basin, Western Himalaya. Isotopic seasonality observed in the catchment precipitation was generally reflected in surface runoff (supraglacial melt and proglacial stream) and shows a shift in major water source during the melt season. Isotopically correlated (δ18O–δD) high deuterium intercept in the surface runoff suggests that westerly precipitation acts as the dominant source, augmenting the other snow- and ice-melt sources in the region. The endmember contributions to the proglacial stream were quantified using a three-component mixing. Overall, glacier ice melt is the major source of proglacial discharge. Snowmelt is the predominant source during the early ablation season (June) and the peak ISM period (August and September), whereas ice melt reaches a maximum in the peak melt period (July). The monthly contribution of rain is on the lower side and shows a steady rise and decline with onset and retreat of the monsoon. These results are persistent with the surface melt pattern observed in Chhota Shigri glacier, Upper Chandra basin. Moreover, the role of the ISM in Chhota Shigri glacier is unvarying to that observed in other glacierized catchments of Upper Ganga basin. Thus, this study augments the significant role of the ISM in glacier mass balance up to the boundary of the central-western Himalayan glaciated region.  相似文献   

2.
A physically based distributed hydrological model developed at the University of Yamanashi based on block‐wise use of TOPMODEL and the Muskingum–Cunge method (YHyM/BTOPMC), integrated with a simple degree‐day–based snow accumulation/melt sub‐model, was applied to evaluate hydrological responses under changing climatic conditions in the snow‐fed Kali Gandaki River Basin (KGRB) in Western Nepal. Rainy season precipitation (June to September) in the basin takes up about 80% of the annual precipitation, and dry season runoff is largely contributed by snowmelt. Climate change is likely to increase the probability of extreme events and problems related to water availability. Therefore, the study aimed to simulate runoff pattern under changing climatic conditions, which will be helpful in the management of water resources in the basin. Public domain global data were widely used in this study. The model was calibrated and validated with an acceptable degree of accuracy. The results predicted that the annual average discharge will increase by 2.4%, 3.7%, and 5.7% when temperature increases by 1, 2, and 3 °C compared with the reference scenario. Similarly, maximum, minimum, and seasonal discharges in the monsoon and pre‐monsoon seasons will also increase with rising temperature. Snowmelt runoff is found sensitive to temperature changes in the KGRB. Increasing temperature will cause a faster snowmelt, but precipitation will increase the snowpack and also shed a positive effect on the total annual and monsoonal discharge. For the combined scenarios of increasing temperature and precipitation, the annual average discharge will increase. In contrast, discharge during the increasing temperature and decreasing precipitation will tend to decrease. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Climate and land use changes greatly modify hydrologic regimes. In this paper, we modelled the impacts of biofuel cultivation in the US Great Plains on a 1061‐km2 watershed using the Soil and Water Assessment Tool (SWAT) hydrologic model. The model was calibrated to monthly discharges spanning 2002–2010 and for the winter, spring, and summer seasons. SWAT was then run for a climate‐change‐only scenario using downscaled precipitation and a projected temperature for 16 general circulation model (GCM) runs associated with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 scenario spanning 2040–2050. SWAT was also run on a climate change plus land use change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native range grasses, winter wheat, and rye (89% of the basin). For the climate‐change‐only scenario, the GCMs agreed on a monthly temperature increase of 1–2 °C by the 2042–2050 period, but they disagreed on the direction of change in precipitation. For this scenario, decreases in surface runoff during all three seasons and increases in spring and summer evapotranspiration (eT) were driven predominantly by precipitation. Increased summer temperatures also significantly contributed to changes in eT. With the addition of switchgrass, changes in surface runoff are amplified during the winter and summer, and changes in eT are amplified during all three seasons. Depending on the GCM utilized, either climate change or land use change (switchgrass cultivation) was the dominant driver of change in surface runoff while switchgrass cultivation was the major driver of changes in eT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

To assess the predictive significance of meteorological parameters for forecasting discharge from the Dokriani Glacier basin in the Himalayan region, discharge autocorrelation and correlations between discharge and meteorological factors were investigated on a monthly and a seasonal basis. Changes in correlations between discharge and meteorological variables, lagged by 0–3 days, were determined. Discharge autocorrelation was found to be very high for each individual summer month and for the melt season as a whole. This suggests that a substantial meltwater storage in the glacier, which results in a delayed response of runoff, and therefore discharge, from the highly glacierized basins is very much dependent on the previous day's discharge. A comparison of correlations between discharge and temperature, and discharge and precipitation shows that temperature has a better correlation with discharge during June and September, while precipitation has good correlation with discharge in July and August. Variations in the physical features of the glacier, weather conditions, and precipitation and its distribution with time over the basin account for changes in correlations. To forecast the runoff from the Dokriani Glacier basin, multiple linear regression equations were developed separately for each month and for the whole melt season. A better forecast was obtained using the seasonal regression equation. A comparison of correlations for the Dokriani Glacier with those for the Z'mutt Glacier basin, Switzerland, illustrates that, for both basins, the previous day's discharge (Qi-1) shows maximum autocorrelation throughout the melt period. Whereas a good correlation between discharge and temperature was observed for the Z'mutt Glacier basin for the whole melt period, for the Dokriani Glacier basin it was strong at the beginning and end of the ablation season. Runoff delaying behaviour in the Dokriani Glacier basin is found more prominent than in the Z'mutt Glacier basin early in the melt season. Water storage appears to be less significant in the Dokriani Glacier than in the Z'mutt Glacier towards the end of the ablation season. The strength of correlation between discharge and precipitation is higher for the Dokriani Glacier basin than for the Z'mutt Glacier basin. This is due to higher rainfall in the Dokriani Glacier basin. In general, for both glacier basins, maximum correlation is found between discharge and precipitation on the same day.  相似文献   

5.
The purpose of this paper is to apply “Soil and Water Assessment Tool (SWAT)” model to assess the impacts of climate change on stream discharge and sediment yield from Song Cau watershed in Northern Viet Nam. Three climate change scenarios B1, B2, and A2; representing low, medium, and high levels of greenhouse gas emission, respectively, were considered in this study. The highest changes in stream discharge (up to 11.4%) and sediment load (15.3%) can be expected in wet season in 2050s according to the high emission scenario (A2), while for the low emission scenario the corresponding changes equal to 8.8% and 12.6%. The results show that the stream discharge is likely to increase in the future during the wet season with increasing threats of sedimentation.  相似文献   

6.
The observed retreat of several Himalayan glaciers and snow packs is a cause of concern for the huge population in southern Asia that is dependent on the glacial‐fed rivers emanating from Himalayas. There is considerable uncertainty about how cryospheric recession in the Himalayan region will respond to climate change, and how the water resource availability will be affected. As a first step towards quantifying the contribution of glacier‐melt water, hydrograph separation of River Ganga at Rishikesh into its constituent components, namely (i) surface runoff, (ii) glacial ice‐melt and (iii) groundwater discharge has been done in this paper. A three‐component mixing model has been employed using the values of δ18O and electrical conductivity (EC) of the river water, and its constituents, to estimate the time‐varying relative fraction of each component. The relative fraction of the surface runoff peaks (70–90%) during winter, due to the near‐zero contribution of glacial ice‐melt, essentially represents the melting of surface snow from the catchment. The contribution of glacial ice‐melt to the stream discharge peaks during summer and monsoon reaches a maximum value of ~40% with an average of 32%. The fraction of groundwater discharge varies within a narrow range (15 ± 5%) throughout the year. On the basis of the variation in the d‐excess values of river water, it is also suggested that the snow‐melt and ice‐melt component has a significant fraction derived from winter precipitation with moisture source from mid‐latitude westerlies (also known as western disturbances). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
We apply an integrated hydrology‐stream temperature modeling system, DHSVM‐RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt‐dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub‐basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The impact of warmer climate on melt and evaporation was studied for rainfed, snowfed and glacierfed basins located in the western Himalayan region. Hydrological processes were simulated under current climatic conditions using a conceptual hydrological model, which accounts for the rainfall–runoff, evaporation losses, snow and glacier melt. After simulations of daily observed streamflow (R2=0.90) for 6 years, the model was used to study the impact of warmer climate on melt and evaporation. Based on the future projected climatic scenarios in the study region, three temperature scenarios (T+1, T+2 and T+3 °C) were adopted for quantifying the effect of warmer climate. The comparison of the effect of warmer climate on different types of basins indicated that the increase in evaporation was the maximum for snowfed basins. For a T+2 °C scenario, the annual evaporation for the rainfed basins increased by about 12%, whereas for the snowfed basins it increased by about 24%. The high increase of the evaporation losses would reduce the runoff. It was found that under a warmer climate, melt was reduced from snowfed basins, but increased from glacierfed basins. For a T+2 °C scenario, annual melt was reduced by about 18% for the studied snowfed basin, while it increased by about 33% for the glacierfed basin. Thus, impact of warmer climate on the melt from the snowfed and glacierfed basins was opposite to each other. The study suggests that out of three types of basins, snowfed basins are more sensitive in terms of reduction in water availability due to a compound effect of increase in evaporation and decrease in melt. For a complex type of basin, the decrease in melt from seasonal snow may be counterbalanced by increase in melt from glaciers. However, on long-term basis, when the areal extent of glaciers will decrease due to higher melt rate, the water availability from the complex basins will be reduced.  相似文献   

9.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low‐flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin‐wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed‐parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin‐wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.  相似文献   

11.
Stream temperature is an important control of many in-stream processes. There is rising concern about increases in stream temperature with projected climate changes and human-related water activities. Here, we investigate the responses to climate change and water diversions in Eel River basin. The increase in stream temperatures is considered to be the result of changes in air temperature, the proportion of base flow and the amount of stream flow derived from historical and future simulations using the integrated VIC hydrologic model and ANN stream temperature model. The results show that stream temperature will increase throughout the basin in the future under two climate change representative concentration pathways (RCPs 4.5 and 8.5) and will also be influenced by the water diversion activities schedules. Specifically, the stream temperature increases, in the late twenty-first century under RCP8.5 scenarios, from 1.20 to 2.40 °C in summer and from 0.58–3.46 °C in winter respectively; Water diversion activities in Eel River Basin can increase nearly 1 °C in stream temperature. Therefore, both climate change and water diversion activities can substantially cause the rise of more than 2 °C in stream temperature. In conclusion, stream temperature is mainly sensitive to the proportion of base flow in summer, but also the change of the amount of stream flow in winter in our case study area. In addition, it should be noted that the low intensity irrigation schedule has lower impacts on increasing stream temperature, whereas the high intensity irrigation schedule will further exacerbate the rise of stream temperature. Understanding the different impacts of climate change scenarios and irrigation schedules on stream temperature can help identify climate-sensitive regions, climate-sensitive seasons and water diversion schedules as well as assist in planning for climate change and social adaptive management.  相似文献   

12.
The hydrologic impact of climate change has been largely assessed using mostly conceptual hydrologic models. This study investigates the use of distributed hydrologic model for the assessment of the climate change impact for the Spencer Creek watershed in Southern Ontario (Canada). A coupled MIKE SHE/MIKE 11 hydrologic model is developed to represent the complex hydrologic conditions in the Spencer Creek watershed, and later to simulate climate change impact using Canadian global climate model (CGCM 3·1) simulations. Owing to the coarse resolution of GCM data (daily GCM outputs), statistical downscaling techniques are used to generate higher resolution data (daily precipitation and temperature series). The modelling results show that the coupled model captured the snow storage well and also provided good simulation of evapotranspiration (ET) and groundwater recharge. The simulated streamflows are consistent with the observed flows at different sites within the catchment. Using a conservative climate change scenario, the downscaled GCM scenarios predicted an approximately 14–17% increase in the annual mean precipitation and 2–3 °C increase in annual mean maximum and minimum temperatures for the 2050s (i.e., 2046–2065). When the downscaled GCM scenarios were used in the coupled model, the model predicted a 1–5% annual decrease in snow storage for 2050s, approximately 1–10% increase in annual ET, and a 0·5–6% decrease in the annual groundwater recharge. These results are consistent with the downscaled temperature results. For future streamflows, the coupled model indicated an approximately 10–25% increase in annual streamflows for all sites, which is consistent with the predicted changes in precipitation. Overall, it is shown that distributed hydrologic modelling can provide useful information not only about future changes in streamflow but also changes in other key hydrologic processes such as snow storage, ET, and groundwater recharge, which can be particularly important depending on the climatic region of concern. The study results indicate that the coupled MIKE SHE/MIKE 11 hydrologic model could be a particularly useful tool for understanding the integrated effect of climate change in complex catchment scale hydrology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper provides the results of hydrological modelling in a mesoscale glaciated alpine catchment of the Himalayan region. In the context of global climate change, the hydrological regime of an alpine mountain is likely to be affected, which might produce serious implications for downstream water availability. The main objective of this study was to understand the hydrological system dynamics of a glaciated catchment, the Dudh Kosi River basin, in Nepal, using the J2000 hydrological model and thereby understand how the rise in air temperature will affect the hydrological processes. The model is able to reproduce the overall hydrological dynamics quite well with an efficiency result of Nash–Sutcliffe (0.85), logarithm Nash–Sutcliffe (0.93) and coefficient of determination (0.85) for the study period. The average contribution from glacier areas to total streamflow is estimated to be 17%, and snowmelt (other than from glacier areas) accounts for another 17%. This indicates the significance of the snow and glacier runoff in the Himalayan region. The hypothetical rise in temperature scenarios at a rate of +2 and +4 °C indicated that the snowmelt process might be largely affected. An increase in snowmelt volume is noted during the premonsoon period, whereas the contribution during the monsoon season is significantly decreased. This occurs mainly because the rise in temperature will shift the snowline up to areas of higher altitude and thereby reduce the snow storage capacity of the basin. This indicates that the region is particularly vulnerable to global climate change and the associated risk of decreasing water availability to downstream areas. Under the assumed warming scenarios, it is likely that in the future, the river might shift from a ‘melt‐dominated river’ to a ‘rain‐dominated river’. The J2000 model should be considered a promising tool to better understand the hydrological dynamics in alpine mountain catchments of the Himalayan region. This understanding will be quite useful for further analysis of ‘what‐if scenarios’ in the context of global climate and land‐use changes and ultimately for sustainable Integrated Water Resources Management in the Himalayan region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

A semi-distributed hydrological model is developed, calibrated and validated against unregulated river discharge from the Tocantins-Araguaia River Basin, northern Brazil. Climate change impacts are simulated using projections from the 41 Coupled Model Intercomparison Project Phase 5 climate models for the period 2071–2100 under the RCP4.5 scenario. Scenario results are compared to a 1971–2000 base line. Most climate models suggest declines in mean annual discharge although some predict increases. A large proportion suggest that the dry season experiences large declines in discharge, especially during the transition to the rising water period. Most models (>75%) suggest declines in annual minimum flows. This may have major implications for both current and planned hydropower schemes. There is greater uncertainty in projected changes in wet season and annual maximum discharges. Two techniques are investigated to reduce uncertainty in projections, but neither is able to provide more confidence in the simulated changes in discharge.
Editor D. Koutsoyiannis Associate editor F. Hattermann  相似文献   

15.
The present study sets out to investigate the sensitivity of water availability to climate change for a large western Himalayan river (the Satluj River basin with an area of 22 275 km2 and elevation range of 500 to 7000 m), which receives contributions from rain, snow and glacier melt runoff. About 65% of the basin area is covered with snow during winter, which reduces to about 11% after the ablation period. After having calibrated a conceptual hydrological model to provide accurate simulations of observed stream flow, the hydrological response of the basin was simulated using different climatic scenarios over a period of 9 years. Adopted plausible climate scenarios included three temperature scenarios (T + 1, T + 2, T + 3 °C) and four rainfall scenarios (P ? 10, P ? 5, P + 5 and P + 10%). The effect of climate change was studied on snowmelt and rainfall contribution runoff, and total stream flow. Under warmer climate, a typical feature of the study basin was found to be reduction in melt from the lower part of the basin owing to a reduction in snow covered area and shortening of the summer melting season, and, in contrast, an increase in the melt from the glacierized part owing to larger melt and an extended ablation period. Thus, on the basin scale, reduction in melt from the lower part was counteracted by the increase from melt from upper part of the basin, resulting in a decrease in the magnitude of change in annual melt runoff. The impact of climate change was found to be more prominent on seasonal rather than annual water availability. Reduction of water availability during the summer period, which contributes about 60% to the annual flow, may have severe implications on the water resources of the region, because demand of water for irrigation, hydropower and other usage is at its peak at this time. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
《水文科学杂志》2013,58(3):596-605
Abstract

The potential effect of climatic change on the flow of the Upper Changjiang (or Yangtze River) above the Three Gorges, China, was simulated with the SLURP hydrological model, using ERA40 data from 1961–1990 to simulate the baseline streamflow, and employing scenario temperature and precipitation changes depicted by two global climate models: the Hadley Centre and the Canadian climate model (CCCma) for both the B2 scenario (moderate emission of greenhouse gases) and the A2 scenario (more intense emission), for the 2021–2050 and 2071–2100 time horizons. In general, temperature and precipitation changes are more pronounced for the latter than for the former period. Winter low flows will not change but summer high flow may be augmented by increased precipitation. By mid-century, temperature increase will reduce streamflow according to CCCma, but not so under the Hadley Centre scenario. By the end of the century, precipitation will be great enough to overcome the influence of warming to raise discharge from most parts of the basin. The Min and the Jinsha rivers warrant much attention, the former because of its large flow contribution and the latter because of its sensitivity to climate forcing.  相似文献   

18.
With increasing uncertainties associated with climate change, precipitation characteristics pattern are receiving much attention these days. This paper investigated the impact of climate change on precipitation in the Kansabati basin, India. Trend and persistence of projected precipitation based on annual, wet and dry periods were studied using global climate model (GCM) and scenario uncertainty. A downscaling method based on Bayesian neural network was applied to project precipitation generated from six GCMs using two scenarios (A2 and B2). The precipitation values for any of three time periods (dry, wet and annual) do not show significant increasing or decreasing trends during 2001–2050 time period. There is likely an increasing trend in precipitation for annual and wet periods during 2051–2100 based on A2 scenario and a decreasing trend in dry period precipitation based on B2 scenario. Persistence during dry period precipitation among stations varies drastically based on historical data with the highest persistence towards north‐west part of the basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A simple conceptual semi‐distributed modelling approach for assessing the impacts of climate change on direct groundwater recharge in a humid tropical river basin is investigated. The study area is the Chaliyar river basin in the state of Kerala, India. Many factors affecting future groundwater recharge include decrease or increase in precipitation and temperature regimes, coastal flooding, urbanization and changes in land use. The model is based on the water‐balance concept and links the atmospheric and hydrogeologic parameters to different hydrologic processes. It estimates daily water‐table fluctuation and is calibrated and validated using 10 years of data. Data for the first 6 years (2000 to 2005) is used for model calibration, and data for the remaining four years (2006 to 2009) is used for validation. For assessing the impact of predicted climate change on groundwater recharge during the period 2071–2100, temperature and precipitation data in two post climate change scenarios, A2 and B2, were predicted using the Regional Climate Model (RCM), PRECIS (Providing Regional Climates for Impact Studies). These data were then corrected for biases and used in a hydrologic model to predict groundwater recharge in the post climate change scenario. Due to lack of reliable data and proper knowledge as to the magnitude and extent of future climatic changes, it may not be possible to include all the possible effects quantitatively in groundwater recharge modelling. However, the study presents a scientific method to assess the impact of predicted climate change on groundwater recharge and would help engineers, hydrologists, administrators and planners to devise strategies for the efficient use as well as conservation of freshwater resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We evaluated the potential impacts of future land cover change and climate variability on hydrological processes in the Neka River basin, northern Iran. This catchment is the main source of water for the intensively cultivated area of Neka County. Hydrological simulations were conducted using the Soil and Water Assessment Tool. An ensemble of 17 CMIP5 climate models was applied to assess changes in temperature and precipitation under the moderate and high emissions scenarios. To generate the business-as-usual scenario map for year 2050 we used the Land Change Modeler. With a combined change in land cover and climate, discharge is expected to decline in all seasons except the end of autumn and winter, based on the inter-model average and various climate models, which illustrated a high degree of uncertainty in discharge projections. Land cover change had a minor influence on discharge relative to that resulting from climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号