首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Egypt is currently seeking additional freshwater resources to support national reclamation projects based mainly on the Nubian aquifer groundwater resources. In this study, temporal (April 2002 to June 2016) Gravity Recovery and Climate Experiment (GRACE)-derived terrestrial water storage (TWSGRACE) along with other relevant datasets was used to monitor and quantify modern recharge and depletion rates of the Nubian aquifer in Egypt (NAE) and investigate the interaction of the NAE with artificial lakes. Results indicate: (1) the NAE is receiving a total recharge of 20.27 ± 1.95 km3 during 4/2002?2/2006 and 4/2008–6/2016 periods, (2) recharge events occur only under excessive precipitation conditions over the Nubian recharge domains and/or under a significant rise in Lake Nasser levels, (3) the NAE is witnessing a groundwater depletion of ? 13.45 ± 0.82 km3/year during 3/2006–3/2008 period, (4) the observed groundwater depletion is largely related to exceptional drought conditions and/or normal baseflow recession, and (5) a conjunctive surface water and groundwater management plan needs to be adapted to develop sustainable water resources management in the NAE. Findings demonstrate the use of global monthly TWSGRACE solutions as a practical, informative, and cost-effective approach for monitoring aquifer systems across the globe.  相似文献   

2.
Groundwater flow modelling of the Kwa Ibo River watershed in Abia State of Nigeria is presented in this paper with the aim of assessing the degree of interaction between the Kwa Ibo River and the groundwater regime of the thick sandy aquifer. The local geology of the area comprises the Quaternary to recent Benin Formation. Potential aquifer zones that were delineated earlier using geoelectrical resistivity soundings and borehole data for the area formed the basis for groundwater flow modelling. The watershed has been modelled with a grid of 65 rows by 43 columns and with two layers. Lateral inflow from the north has been simulated with constant heads at the Government College, Umuahia, and outflow at Usaka Elegu in the south. The Kwa Ibo River traverses the middle of the watershed from north to south. The river‐stage data at Umudike, Amawom, Ntalakwu and Usaka Elegu have been used for assigning surface water levels and riverbed elevations in the model. Permeability distribution was found to vary from 3 to 14·5 m day?1. Natural recharge due to rainfall formed the main input to the aquifer system, and abstraction from wells was the main output. A steady‐state groundwater flow simulation was carried out and calibrated against the May 1980 water levels using 26 observation wells. The model computations have converged after 123 iterations. Under the transient‐state calibration, the highest rainfall (and hence groundwater recharge) over the 10‐year study period was recorded in 1996, whereas the lowest was recorded in 1991. The computed groundwater balance of 55 274 m3 day?1 was comparable to that estimated from field investigations. Results from the modelling show that abstraction is much less than groundwater recharge. Hence there is the possibility for additional groundwater exploitation in the watershed through drilling of boreholes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Environmental isotopes (δ18O, δD and 3H) were used to understand the hydrodynamics of Lake Naini in the State of Uttar Pradesh, India. The data was correlated with the in situ physico‐chemical parameters, namely temperature, electrical conductivity and dissolved oxygen. The analysis of the data shows that Lake Naini is a warm monomictic lake [i.e. in a year, the lake is stratified during the summer months (March/April to October/November) and well mixed during the remaining months]. The presence of a centrally submerged ridge inhibits the mixing of deeper waters of the lake's two sub‐basins, and they exhibit differential behaviour. The rates of change of isotopic composition of hypolimnion and epilimnion waters of the lake indicate that the water retention time of the lake is very short, and the two have independent inflow components. A few groundwater inflow points to the lake are inferred along the existing fractures, fault planes and dykes. In addition to poor vertical mixing of the lake due to the temperature‐induced seasonal stratification, the lake also shows poor horizontal mixing at certain locations of the lake. The lake–groundwater system appears to be a flow‐through type. Also, a tritium and water‐balance model was developed to estimate the water retention time of well‐mixed and hydrologically steady state lakes. The model assumes a piston flow of groundwater contributing to the lake. The developed model was verified for (a) Finger Lakes, New York; (b) Lake Neusiedlersee, Austria; and (c) Blue Lake, Australia based on literature data. The predicted water retention times of the lakes were close to those reported or calculated from the hydrological parameters given in the references. On application of this model to Lake Naini, a water retention time of ~2 years and age of groundwater contributing to the lake ~14 years is obtained. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
One of the most important issues for water resource management is developing strategies for groundwater modelling that are adaptable to data scarcity. These strategies are particularly important in arid and semi‐arid areas where access to data is poor and data collection is difficult, such as the Lake Chad Basin in Africa. In the present study, we establish a numerical groundwater flow model and evaluate the effects of dry and wet periods on groundwater recharge in the Chari–Logone area (96 000 km2) of the Lake Chad Basin. Boundary conditions, flow direction, sources, and sinks for the Chari–Logone local model were obtained by revising and remodelling the Lake Chad Basin regional hydrogeological model (508 400 km2) developed by the BRGM (Bureau de Recherches Géologiques et Minières) in the 1990s. The simulated aquifer water level showed good agreement with observed levels. Aquifer recharge is primarily determined by river–aquifer interactions and mostly occurs in the southern section of the study area. In wet years, groundwater recharge also occurs in the N'Djamena area. The approach we adopted provided relevant results and was useful as an initial step in more detailed modelling of the area. It also proved to be a useful method for groundwater modelling in large semi‐arid and arid regions where available data are scarce. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
水是人类生存之源,而湖荡被称为地球之“肾”,是河湖水系连接的关键缓冲节点,与人类生存和发展息息相关。长三角平原水系众多,河流纵横,天然湖泊与人工沟渠遍布,平原湖荡湖水与周边地下水的水力联系较为频繁,而地下水对湖泊水均衡贡献尚不明确,对平原湖荡地下水赋存和运移规律的认识不足。本研究以苏州吴江区元荡湖为研究对象,选取氡同位素作为湖水和地下水水力交换过程的示踪剂,建立氡箱模型,揭示元荡湖不同区段与地下水的水力联系过程和补给关系,并通过水位动态验证分析湖水—地下水交互关系。枯水期元荡湖水位和氡浓度空间分布特征指示研究区内地下水向湖水排泄,其中以湖泊西侧较为明显,地下水入流补给的氡为7.137×106 Bq/d,输入量源项占比为90%,地下水流入量为4540.801 m3/d,地下水每日流入量对元荡湖水量的贡献率为2.551%。参数敏感性分析结果表明,风速与地下水222Rn活度为特别敏感参数,取值差异较大时会导致计算误差急剧增大,改善测点布置和提高模型参数精度能有效提高模型计算结果的准确性和可靠程度。借助氡同位素示踪方法,建立湖泊...  相似文献   

7.
New Zealand's gravel‐bed rivers have deposited coarse, highly conductive gravel aquifers that are predominantly fed by river water. Managing their groundwater resources is challenging because the recharge mechanisms in these rivers are poorly understood and recharge rates are difficult to predict, particularly under a more variable future climate. To understand the river‐groundwater exchange processes in gravel‐bed rivers, we investigate the Wairau Plain Aquifer using a three‐dimensional groundwater flow model which was calibrated using targeted field observations, “soft” information from experts of the local water authority, parameter regularization techniques, and the model‐independent parameter estimation software PEST. The uncertainty of simulated river‐aquifer exchange flows, groundwater heads, spring flows, and mean transit times were evaluated using Null‐space Monte‐Carlo methods. Our analysis suggests that the river is hydraulically perched (losing) above the regional water table in its upper reaches and is gaining downstream where marine sediments overlay unconfined gravels. River recharge rates are on average 7.3 m3/s, but are highly dynamic in time and variable in space. Although the river discharge regularly hits 1000 m3/s, the net exchange flow rarely exceeds 12 m3/s and seems to be limited by the physical constraints of unit‐gradient flux under disconnected rivers. An important finding for the management of the aquifer is that changes in aquifer storage are mainly affected by the frequency and duration of low‐flow periods in the river. We hypothesize that the new insights into the river‐groundwater exchange mechanisms of the presented case study are transferable to other rivers with similar characteristics.  相似文献   

8.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The heterogeneous nature of both groundwater discharge to a lake (inflow) and nitrate concentrations in groundwater can lead to significant errors in calculations of nutrient loading. Therefore, an integrated approach, combining groundwater flow and transport modelling with observed nitrate and ammonium groundwater concentrations, was used to estimate nitrate loading from a catchment via groundwater to an oligotrophic flow‐through lake (Lake Hampen, Denmark). The transport model was calibrated against three vertical nitrate profiles from multi‐level wells and 17 shallow wells bordering a crop field near the lake. Nitrate concentrations in groundwater discharging to the lake from the crop field were on average 70 times higher than in groundwater from forested areas. The crop field was responsible for 96% of the total nitrate loading (16.2 t NO3/year) to the lake even though the field only covered 4.5% of the catchment area. Consequently, a small change in land use in the catchment will have a large effect on the lake nutrient balance and possible lake restoration. The study is the first known attempt to estimate the decrease of nitrate loading via groundwater to a seepage lake when an identified catchment source (a crop field) is removed.  相似文献   

10.
Water resources development and exploitation are critical for a viable and sustainable modern human society. Unfortunately, however, there is a considerable water storage depletion and environmental degradation in especially (semi)‐arid river basins due to the forces of population growth, urbanization, industrialization and intensive agricultural irrigation. Addressing water storage depletion is not only a question of research, but is very much a question of developing appropriate countermeasures to preserve valuable/fragile ecological systems. As one such effort, this study analyzes the hydrology and storage in Baiyangdian Lake as affected by water resources development and exploitation in the Baiyangdian Lake Catchment of Northern China. Three models, WetSpass (Water and Energy Transfer between Soil, Plants and the Atmosphere under quasi‐Steady State), WATBUD (Water Budget) and MODFLOW (USGS three‐dimensional finite‐difference groundwater flow model) were used in combination to simulate the hydrogeologic conditions in the lake catchment for 1956–2008. The model‐calibrated values are in good agreement with the measured values, with R2 > 0·8 and RMSE < 10% of measured values. Runoff, the primary source of water for the lake storage, has steadily declined due mainly to multiple dam construction and reservoir impoundments in the headwater valleys and rivers in the catchment. In addition to dwindling runoff, groundwater levels have declined considerably due to over‐abstraction, mainly for agricultural irrigation. Additionally, evaporation or evapotranspiration is increasing in the lake catchment due to rising temperatures. The worsening hydrological conditions, amid the harsh semi‐arid climate, have resulted in considerable depletion of the storage and hydrology of Baiyangdian Lake. Sustainable countermeasures like agricultural water‐saving and infusion of external water (e.g., via by the South–North Water Transfer Project) could be a viable option for preserving not only the hydrology of the lake catchment, but also storage in Baiyangdian Lake. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Elevated dissolved organic carbon (DOC) has been detected in groundwater beneath irrigated sugarcane on the Burdekin coastal plain of tropical northeast Australia. The maximum value of 82 mg/L is to our knowledge the highest DOC reported for groundwater beneath irrigated cropping systems. More than half of the groundwater sampled in January 2004 (n = 46) exhibited DOC concentrations greater than 30 mg/L. DOC was progressively lower in October 2004 and January 2005, with a total decrease greater than 90% indicating varying load(s) to the aquifer. It was hypothesized that the elevated DOC found in this groundwater system is sourced at or near the soil surface and supplied to the aquifer via vertical recharge following above average rainfall. Possible sources of DOC include organic‐rich sugar mill by‐products applied as fertilizer and/or sugarcane sap released during harvest. CFC‐12 vertical flow rates supported the hypothesis that elevated DOC (>40 mg/L) in the groundwater results from recharge events in which annual precipitation exceeds 1500 mm/year (average = 960 mm/year). Occurrence of elevated DOC concentrations, absence of electron acceptors (O2 and NO3) and both Fe2+ and Mn2+ greater than 1 mg/L in shallow groundwater suggest that the DOC compounds are chemically labile. The consequence of high concentrations of labile DOC may be positive (e.g., denitrification) or negative (e.g., enhanced metal mobility and biofouling), and highlights the need to account for a wider range of water quality parameters when considering the impacts of land use on the ecology of receiving waters and/or suitability of groundwater for irrigated agriculture.  相似文献   

12.
The Badain Jaran Desert is the second largest desert of China with a total area of 49 200 km2. At least 72 perennial lakes are scattered throughout the desert, sustaining a unique desert–lake ecosystem. Groundwater of various origins was believed to play an essential role in maintaining those desert lakes, but hydrological measurements are lacking due to difficult field conditions. This study applied the distributed temperature sensing technique to continuously measure temperature variations in one of the desert lakes – the Badain Lake – to identify groundwater discharge to the lake based on the temperature differences between groundwater and lake water. Because temperature may be influenced by various unforeseen and temporary factors, it is critical to discern those factors that may affect the temperature such as solar radiation and vertical temperature stratification and to ensure that the temperature variations of the lake water as detected by the distributed temperature sensing are mainly caused by groundwater discharge. A time window was identified during which the groundwater discharge is the dominant factor that determines the temperature pattern of the lake water. The results show that the temperature near the eastern and southeastern lakeshore of the eastern Badain Lake is colder than the average, indicating that this area is the main groundwater discharge zone. Near the northwestern lakeshore adjacent to a sand dune, a weak cold abnormal area was identified, indicating that the sand dune is another recharge source to the lake through channelling the local precipitation toward the lake. The contribution from the sand dune, however, appeared to be less than that from the regional groundwater flow. This study provides the first identification of the temperature abnormal areas, which imply groundwater discharges into desert lakes and contributes to a better understanding of the unique desert–lake ecosystem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of this research was to delineate characteristic hydrogeological lake types in the Young Glacial Area (YGA). The YGA is in the central and east part of the Kashubian Lake District (KLD) in Northern Poland, an area covered by deposits of Quaternary glaciation. All the bigger lakes were investigated in the area of about 1500 km2 (39 lakes). The role of lakes in groundwater recharge and discharge was determined from total dissolved solids (TDS) in lake waters and also from groundwater flow simulation. The general trend was that gaining lakes, as determined by flow modeling, had higher values of TDS than losing lakes. In addition to typical gaining lakes (with TDS > 250 mg/l), there were losing lakes perched on glacial till deposits with very low TDS (<100 mg/l). Two groups of losing lakes were delineated: ones with very low TDS and another group with slightly higher TDS (due to local contact with groundwater). Flow‐through lakes with TDS of 170–200 mg/l were also delineated.  相似文献   

14.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Comprehensive studies on the spatial distribution, water quality, recharge source, and hydrochemical evolution of regional groundwater form the foundation of rational utilization of groundwater resources. In this study, we investigated the water levels, hydrochemistry, and stable isotope composition of groundwater in the vicinity of the Qinghai Lake in China to reveal its recharge sources, hydrochemical evolution, and water quality. The level of groundwater relative to the level of water in the Qinghai Lake ranged from −1.27 to 122.91 m, indicating most of the groundwater to be flowing into the lake. The local evaporation line (LEL) of groundwater was simulated as δ2H = 6.08 δ18O-3.01. The groundwater surrounding the Qinghai Lake was primarily recharged through local precipitation at different altitudes. The hydrochemical type of most of the groundwater samples was Ca-Mg-HCO3; the hydrochemistry was primarily controlled by carbonate dissolution during runoff. At several locations, the ionic concentrations in groundwater exceeded the current drinking water standards making it unsuitable for drinking. The main source of nitrate in groundwater surrounding the Qinghai Lake was animal feces and sewage, suggesting that groundwater pollution should be mitigated in areas practicing animal husbandry in the Qinghai-Tibet Plateau, regardless of industrial and urbanization rates being relatively low in the region. The scientific planning, engineering, and management of livestock manure and wastewater discharge from animal husbandry practices is a crucial and is urgently required in the Tibetan Plateau.  相似文献   

16.
Integrated dynamic water and chloride balance models with a catchment‐scale hydrological model (PRMS) are used to investigate the response of a terminal tropical lake, Lake Abiyata, to climate variability and water use practices in its catchment. The hydrological model is used to investigate the response of the catchment to different climate and land‐use change scenarios that are incorporated into the lake model. Lake depth–area–volume relationships were established from lake bathymetries. Missing data in the time series were filled using statistical regression techniques. Based on mean monthly data, the lake water balance model produced a good agreement between the simulated and observed levels of Lake Abiyata for the period 1968–83. From 1984 onwards the simulated lake level is overestimated with respect to the observed one, while the chloride concentration is largely underestimated. This discrepancy is attributed to human use of water from the influent rivers or directly from the lake. The simulated lake level and chloride concentration are in better agreement with observed values (r2 = 0·96) when human water use for irrigation and salt exploitation are included in the model. A comparison of the simulation with and without human consumption indicates that climate variability controls the interannual fluctuations and that the human water use affects the equilibrium of the system by strongly reducing the lake level. Sensitivity analysis based on a mean climatic year showed that, after prolonged mean climatic conditions, Lake Abiyata reacts more rapidly to an abrupt shift to wetter conditions than to dry conditions. This study shows the significant sensitivity of the level and salinity of the terminal Lake Abiyata to small changes in climate or land use, making it a very good ‘recorder’ of environmental changes that may occur in the catchment at different time scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Being a large hyper‐saline water body, Lake Urmia in north‐western Iran deals with a gradual decline in its water level. Most of the studies on Lake Urmia have neglected the groundwater issue. In this study, as a direct approach, the interaction between the groundwater level and the lake water level is investigated both in time and space by analysing the groundwater data compiled from observation wells surrounding the lake. Baseflow separation is considered as an indirect approach to understand the groundwater contribution to the river network flowing into the lake. It is determined that about 70% of run‐off in the rivers draining into the lake is born in the form of baseflow. An interaction between the lake and the groundwater storage is clearly seen from the analysis to conclude that groundwater has a potential to recharge the lake. Thus, the shrinkage of water level in Lake Urmia could be expected to accelerate with the drastic use of groundwater, which will be a disaster with no return.  相似文献   

18.
This paper proposes an approach to estimate groundwater recharge using an optimization‐based water‐table fluctuation method combined with a groundwater balance model in an arid hardrock‐alluvium region, located at the Oman–United Arab Emirates border. We introduce an “effective hardrock thickness” term to identify the percentage of the considered hardrock thickness in which effective groundwater flow takes place. The proposed method is based upon a Thiessen polygon zoning approach. The method includes subpolygons to represent specific geologic units and to enhance the confidence of the estimated groundwater recharge. Two linear and 1 nonlinear submodels were developed to evaluate the model components for the calibration (October 1996 to September 2008) and validation (October 2008 to September 2013) periods. Long‐term annual groundwater recharge from rainfall and return flow over the model domain are estimated as 24.62 and 5.71 Mm3, respectively, while the effective groundwater flow circulation is found to occur in the upper 7% of the known hardrock thickness (42 m), confirming conclusions of previous field studies. Considering a total difference in groundwater levels between eastern and western points of the study area of the order of 220 m and a 12‐year monthly calibration period, a weighted root mean squared error in predicted groundwater elevation of 2.75 m is considered quite reasonable for the study area characterized by remarkable geological and hydrogeological diversity. The proposed approach provides an efficient and robust method to estimate groundwater recharge in regions with a complex geological setting in which interaction between fractured and porous media cannot be easily assessed.  相似文献   

19.
Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil–water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996–2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5‐year period. Intra‐annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The objective of the study was to determine which factors regulate zooplankton organisms along Lake Nasser. Temperature, pH, DO, conductivity, turbidity, nutrients, and zooplankton abundance were measured. Twenty-three species of zooplankton were recorded in Lake Nasser included in Copepoda, Cladocera and Rotifera. Copepoda represented the main bulk of the community. The lowest standing stock of zooplankton was noticed during spring due to the highest fish predation during this season associated with the lowest turbidity. Big difference in temperature in Lake Nasser along the year round is considered as a controlling factor related to range of tolerance of species. The oscillation of the lake water level and the different factors affect the standing stock of zooplankton in the lake. Thus, continuous monitoring of Lake Nasser biota should be undertaken to follow the changes in the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号