首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Forest evapotranspiration is one of the main components in the regional water budget. A comparison between measured and estimated eddy covariance (EC) data, considering the Katerji–Perrier (KP), Todorovic (TD) and Priestley–Taylor (PT) actual evapotranspiration methods, was carried out. These models, relying on more easily obtainable data, are valuable when long‐term direct measurements are not available. The objective of this paper is to compare the effectivity of these three models. In this paper, experimental data were obtained within the temperate mixed forest of broad‐leaved and coniferous trees of the Changbai Mountains in northeastern China during the growing seasons of 2003 to 2005. The KP method gave the most effective values for half‐hourly and daily evapotranspiration computed by summing up half‐hourly estimates, and the TD method overestimated evapotranspiration by about 30%. The diurnal courses of estimated and measured evapotranspiration showed bell curves, similar to that of net radiation, except for a slight increase at about 14:30 solar time due to a peak value of vapour pressure deficit (VPD). For the case of daily evapotranspiration using daily mean micrometeorological variables, the PT method presented the closest values to the measurements. Accuracy of estimation related to VPD negatively (especially for VPD > 1·5 kPa). The KP parameters, considered to be vegetation dependent, were a = 0·545 and b = 1·31 at the experimental site. A constant PT parameter (α = 1·18) was applied to estimated evapotranspiration. Daily values of α responded to VPD (negatively) more strongly than to soil moisture (positively) in this forest. The experiment showed the inherent limits and advantages of the three methods. The KP method, a semi‐empirical approach, was preferred to estimate half‐hourly evapotranspiration. The TD method was a mechanistic approach to estimate reference evapotranspiration and always overestimated actual evapotranspiration. The PT method, being site dependent and the simplest approach, was effective enough to estimate large time‐scale (at least daily) evapotranspiration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper two models are presented for calculating the hourly evapotranspiration λE (W m?2) using the Penman–Monteith equation. These models were tested on four irrigated crops (grass, soya bean, sweet sorghum and vineyard), with heights between 0·1 and 2·2 m at the adult growth stage. In the first model (Katerji N, Perrier A. 1983. Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne : rôle d'un coefficient cultural. Agronomie 3(6): 513–521, KP model), the canopy resistance rc is parameterized by a semi‐empirical approach. In the second model (Todorovic M. 1999. Single‐layer evapotranspiration model with variable canopy resistance. Journal of Irrigation and Drainage Engineering—ASCE 125: 235–245, TD model), the resistance rc is parameterized by a mechanistic model. These two approaches are critically analysed with respect to the underlying hypotheses and the limitations of their practical application. In the case of the KP model, the mean slope between measured and calculated values of λE was 1·01 ± 0·6 and the relative correlation coefficients r2 ranged between 0·8 and 0·93. The observed differences in slopes, between 0·96 and 1·07, were not associated with the crop height. This model seemed to be applicable to all the crops examined. In the case of the TD model, the observed slope between measured and calculated values of λE for the grass canopy was 0·79. For the other crops, it varied between 1·24 and 1·34. In all the situations examined, the values of r2 ranged between 0·73 and 0·92. The TD model underestimated λE in the case of grass and overestimated it in the cases of the other three crops. The under‐ or overestimation of λE in the TD model were due: (i) to some inaccuracies in the theory of this model, (ii) to not taking into account the effect of aerodynamic resistance ra in the canopy resistance modelling. Therefore, the values of rc were under‐ or overestimated in consequence of mismatching the crop height. The high value of air vapour pressure deficit also contributed to the overestimation of λE, mainly for the tallest crop. The results clarify aspects of the scientific controversy in the literature about the mechanistic and semi‐empirical approaches for estimating λE. From the practical point of view the results also present ways for identifying the most appropriate approach for the experimental situations encountered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Evapotranspiration (ET) is a critical component in the hydrological cycle. However, its actual values appear to be difficult to obtain, especially in areas in which precipitation has high inter‐annual variability. Here, we evaluated eight commonly used ET models in semi‐arid and semi‐humid areas of China. The order of overall performance from best to worst is as follows: the revised Priestley–Taylor model (PT‐JPL, 0.71, 1.65 [18.37%], 4.72 [49.19%]) a a Statistics (model abbreviation, coefficient of determination, bias [relative value], standard deviation [relative value]).
, the modified PT‐JPL model (M1‐PT‐JPL, 0.67, ?0.68 [7.56%], 3.87 [40.31%]), the Community Land Model (CLM, 0.68, ?2.52 [28.01%], 5.10 [53.17%]), the modified PT‐JPL model (M2‐PT‐JPL, 0.63, 0.57 [6.27%], 5.04 [52.52%]), the revised Penman–Monteith model (RS‐PM, 0.62, 3.56 [37.40%], 6.11 [63.68%]), an empirical model (Wang, 0.59, ?1.04 [11.57%], 5.61 [58.43%]), the advection‐aridity model (AA, 0.55, 5.56 [61.78%], 7.45 [77.60%]), and the energy balance model (SEBS, 0.35, 5.11 [56.72%], 9.43 [98.18%]). The performance of all of the models is comparably poor in winter and summer, except for the PT‐JPL model, and relatively good in spring and autumn. Because of the vegetation control on ET, the Wang, RS‐PM, PT‐JPL, M1‐PT‐JPL, and M2‐PT‐JPL models perform better for cropland, whereas the AA model, SEBS model and CLM perform better for grassland. The CLM, PT‐JPL, and Wang models perform better in semi‐arid region than in semi‐humid region, whereas the opposite is true for SEBS and RS‐PM. The AA, M1‐PT‐JPL, and M2‐PT‐JPL models perform similarly in semi‐arid and semi‐humid regions. When considering the inter‐annual variability in precipitation, the Wang model has relatively good performance under only some annual precipitation conditions; the performance of the PT‐JPL and AA models is reduced under conditions of high precipitation; the two modified PT‐JPL models inherited the steady performance of the PT‐JPL model and improved the performance under conditions of high annual precipitation by the modification of the soil moisture constraint. RS‐PM is more appropriate for humid conditions. CLM and PT‐JPL models could be effectively applied to all precipitation conditions because of their good performance across a wide annual precipitation range. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Estimation of daily evapotranspiration (ET) over cloudy regions highly desires models which rely on meteorological data only. Notwithstanding, the conventional crop coefficient (Kc) method requires detailed knowledge of geo/biophysical properties of the coupled land-vegetation system, precipitation, and soil moisture. Six Eddy Covariance (EC) towers in Iowa, California and New Hampshire of the USA (covering corn, soybeans, prairie, and deciduous forest) were selected. Investigation on 6 years (2007–2012) 15-min micrometeorological records of these sites revealed that there is an indubitable strong interaction between relative humidity (RH), reference ET (ETo), and actual ET at different timescales. This allowed to bypass the need for the non-meteorological inputs and express Kc as a second-order polynomial function of RH and ETo, the ambient regression evapotranspiration model (AREM). The coefficients of the empirical function are crop-specific and may require calibration over different soil types. The mean absolute percentage error (MAPE) of the regression against daily EC observations was 17% during the growing season, and 32% throughout the year with root mean square error (RMSE) of 0.74 mm day−1 and coefficient of determination of 0.71. The model was fully operational (MAPE of 34% and RMSE of 0.82 mm day−1) over the four Iowan sites based on inputs from local weather stations and NLDAS-2 forcing data of NASA. AREM was capable of capturing the dynamics of ET at 15-min and daily timescales irrespective of varying complexities associated with biophysical, geophysical and climatological states.  相似文献   

5.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   

6.
Accurate estimation of evapotranspiration (ET) is essential in water resources management and hydrological practices. Estimation of ET in areas, where adequate meteorological data are not available, is one of the challenges faced by water resource managers. Hence, a simplified approach, which is less data intensive, is crucial. The FAO‐56 Penman–Monteith (FAO‐56 PM) is a sole global standard method, but it requires numerous weather data for the estimation of reference ET. A new simple temperature method is developed, which uses only maximum temperature data to estimate ET. Ten class I weather stations data were collected from the National Meteorological Agency of Ethiopia. This method was compared with the global standard PM method, the observed Piche evaporimeter data, and the well‐known Hargreaves (HAR) temperature method. The coefficient of determination (R2) of the new method was as high as 0.74, 0.75, and 0.91, when compared with that of PM reference evapotranspiration (ETo), Piche evaporimeter data, and HAR methods, respectively. The annual average R2 over the ten stations when compared with PM, Piche, and HAR methods were 0.65, 0.67, and 0.84, respectively. The Nash–Sutcliff efficiency of the new method compared with that of PM was as high as 0.67. The method was able to estimate daily ET with an average root mean square error and an average absolute mean error of 0.59 and 0.47 mm, respectively, from the PM ETo method. The method was also tested in dry and wet seasons and found to perform well in both seasons. The average R2 of the new method with the HAR method was 0.82 and 0.84 in dry and wet seasons, respectively. During validation, the average R2 and Nash–Sutcliff values when compared with Piche evaporation were 0.67 and 0.51, respectively. The method could be used for the estimation of daily ETo where there are insufficient data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Reliable estimation of sensible heat flux (H) is important in energy balance models for quantifying evapotranspiration (ET). This study was conducted to evaluate the value of adding the Priestley-Taylor (PT) equation to the METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model. METRIC was used to estimate energy fluxes for 10 Landsat images from the 2005, 2006 and 2007 crop growing seasons in south-central Nebraska, USA, where each image owing to recent rainfall exhibited high residual moisture content even at the hot pixel. The METRIC model performed satisfactorily for net radiation (Rn ) and soil heat flux (G) estimation with a root mean square error (RMSE) of 52 and 24 W m-2, respectively. A RMSE of 122 W m-2 for H indicated the limitation of the METRIC model in estimating H for high residual moisture content of the hot pixel (Alfalfa reference ET fraction, ET r F > 0.15). The modified METRIC model (wet METRIC or wMETRIC) incorporating the PT equation was applied to calculate H at the anchor pixels (hot and cold) for high residual moisture content of the hot pixel. The α coefficient of the PT equation was locally calibrated using hourly meteorological data from an automatic weather station and Rn and G data from a Bowen ratio flux tower. The mean α coefficient value was 1.14. The wMETRIC model reduced the RMSE of H from 122 to 64 W m-2 and that of latent heat flux, LE, from 163 to 106 W m-2. The RMSE of daily ET decreased from 1.7 to 1.1 mm d-1 with wMETRIC. The results indicate that treatment of anchor pixels for high residual moisture content with the PT approach gives improved estimation of H, LE and daily ET. It is recommended that the wMETRIC model be used for estimating ET if the hot pixel has high residual moisture (i.e. reference ET fraction > 0.15).

Citation Singh, R. K. & Irmak, A. (2011) Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes. Hydrol. Sci. J. 56(5), 895–906.  相似文献   

8.
Evapotranspiration (ET) and canopy wetness were measured over a 2‐year intensive field campaign at the Chi‐Lan Mountain cloud forest site in Taiwan. Eddy covariance and sap flow methods were applied to measure ET and tree sap flow of the endemic yellow cypress (Chamaecyparis obtusa var. formosana). ET was 553 mm yr?1 over the study period with an annual rainfall and fog deposition of 4893 and 288 mm yr–1, respectively. The duration of canopy wetness exceeded actual fog or rain events (mostly in the afternoon), and the intercepted water was evaporated later in the following dry morning. The cumulative wet duration accounted for 52% of time over the study period, which was longer than the duration of rainfall and fog altogether (41%). As it adapted to the extremely moist environment, the yellow cypress behaved in a wet‐enhanced/dry‐reduced water use strategy and was sensitive to short periods of dry atmosphere with high evaporation potential. During dry days, the sap flow rate rose quickly after dawn and led to conservative water use through midday and the afternoon. During periodically wet days, the canopy was mostly wetted in the morning, and the interception evaporation contributed largely to the morning ET. The initiation of morning sap flow was postponed 1–3 h, and the sap flow rate tended to peak later at midday. The midday canopy conductance was higher in the periodically wet days (10.6 mm s–1) as compared with 7.6 mm s?1 in the dry days. Consequently, the dry‐reduced water use strategy led to much lower annual ET with respect to the available energy (~46%) and high precipitation input (~11%). The moist‐adapted ecohydrology we report reveals the vulnerability of montane cloud forests to prolonged fog‐free periods. More research is urgently needed to better understand the resilience of these ecosystems and formulate adaptive management plans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A comparison between half‐hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely, the Priestley–Taylor (P‐T), the reference Penman–Monteith (P‐M) and the Common Land Model (CLM), was conducted using three AmeriFlux sites under different land cover and climate conditions (i.e. arid grassland, temperate forest and subhumid cropland). Using the reference P‐M model with a semiempirical soil moisture function to adjust for water‐limiting conditions yielded ET estimates in reasonable agreement with the observations [root mean square error (RMSE) of 64–87 W m?2 for half‐hourly and RMSE of 0.5–1.9 mm day?1 for daily] and similar to the complex Common Land Model (RMSE of 60–94 W m?2 for half‐hourly and RMSE of 0.4–2.1 mm day?1 for daily) at the grassland and cropland sites. However, the semiempirical soil moisture function was not applicable particularly for the P‐T model at the forest site, suggesting that adjustments to key model variables may be required when applied to diverse land covers. On the other hand, under certain land cover/environmental conditions, the use of microwave‐derived soil moisture information was found to be a reliable metric of regional moisture conditions to adjust simple ET models for water‐limited cases. Further studies are needed to evaluate the utility of the simplified methods for different landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Evaluating performances of four commonly used evaporation estimate methods, namely; Bowen ratio energy balance (BREB), mass transfer (MT), Priestley–Taylor (PT) and pan evaporation (PE), based on 4 years experimental data, the most effective and the reliable evaporation estimates model for the semi‐arid region of India has been derived. The various goodness‐of‐fit measures, such as; coefficient of determination (R2), index of agreement (D), root mean square error (RMSE), and relative bias (RB) have been chosen for the performance evaluation. Of these models, the PT model has been found most promising when the Bowen ratio, β is known a priori, and based on its limited data requirement. The responses of the BREB, the PT, and the PE models were found comparable to each other, while the response of the MT model differed to match with the responses of the other three models. The coefficients, β of the BREB, µ of the MT, α of the PT and KP of the PE model were estimated as 0·07, 2·35, 1·31 and 0·65, respectively. The PT model can successfully be extended for free water surface evaporation estimates in semi‐arid India. A linear regression model depicting relationship between daily air and water temperature has been developed using the observed water temperatures and the corresponding air temperatures. The model helped to generate unrecorded water temperatures for the corresponding ambient air temperatures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Soil CO2 efflux in forest and grassland over 5 years from 2005 to 2009 in a semiarid mountain area of the Loess plateau, China, was measured. The aim was to compare the soil respiration and its annual and inter‐annual responses to the changes in soil temperature and soil water content between the two vegetation types for observing soil quality evolution. The differences among the five study years were the annual precipitation (320.1, 370.5, 508.8, 341.6, and 567.4 mm in 2005–2009, respectively) and annual distribution. The results showed that the seasonal change of soil respiration in both vegetation types was similar and controlled by soil temperature and soil water content. The mean soil respiration across 5 years in the forest (3.78 ± 2.68 µmol CO2 m?2 s?1) was less than that in the grassland (4.04 ± 3.06 µmol CO2 m?2 s?1), and the difference was significant. The drought soil in summer depressed soil respiration substantially. The Q10 value across 5‐year measurements was 2.89 and 2.94 for forest and grassland. When soil water content was between wilting point (WP) and field capacity (FC), the Q10 in both types increased with increasing soil water content, and when soil water content dropped to below WP, soil respiration and the Q10 decreased substantially. Although an exponential model was well fitted to predict the annual mean soil respiration for each single year data, it overestimated and underestimated soil respiration, respectively, in drought conditions and after rain for short periods of time during the year. The two‐variable models including temperature and water content variables could be well used to predict soil respiration for both types in all weather conditions. The models proposed are useful for understanding and predicting potential changes in the eastern part of Loess plateau in response to climate change.  相似文献   

12.
To investigate the water circulation of eastern Qinghai‐Tibet plateau during rainy season, water samples of precipitation, throughfall, fog, soil, litter and xylem were collected for stable isotope analysis. The results showed that precipitation mainly originated as a result of the East Asian Monsoon, and the secondarily evaporated water from subalpine ecosystem was an important part in local atmospheric water cycle. The deuterium excess of rainfall in the alpine meadow was evidently higher than the precipitation in the Dengsheng stations. This suggests that a large part of precipitation in alpine meadow was derived from secondarily evaporated water and the mean contribution was 39·57%, about 3·65 mm produced shortly after rain events. Through the contrast of delta (d)‐excess value in different water samples, it could be concluded that the water in subalpine shrubland and transpiration of subalpine dark coniferous forest were the main source of secondarily evaporated water that transferred to alpine meadow. Hence, the precipitation on the east Qinghai‐Tibet plateau was doubly controlled by monsoon and local water circulation in alpine ecosystems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Eddy covariance (EC) and micro‐meteorological data were collected from May 2010 to January 2013 from urban, non‐irrigated bahiagrass (Paspalum notatum) in subtropical south Florida. The objectives were to determine monthly crop coefficients (Kc) for non‐irrigated bahiagrass by using EC evapotranspiration (ET) data and the Food and Agriculture Organization 56 Penman–Monteith reference evapotranspiration equation; compare crop ET (ETc) calculated with new Kc values to ETc obtained using Kc values available in the literature; and compare results and methodologies for statistical differences. New Kc values ranged from 0.62 to 0.92 and were different from Kc values found in the scientific literature for bahiagrass. Resulting ETc calculated using literature Kc values were significantly different from EC ET data, whereas ETc using the new Kc values was not. Specifically, literature Kc values were temporally biased to miscalculate the timing of convergence between potential and actual ET, assuming that our new Kc values calculated with EC methods were most accurate. As a consequence, ETc calculated using the literature Kc values was either too large or too small. However, one set of literature Kc values from a similar climate and water table depth were closer to our new Kc values, indicating that climate should be considered when selecting urban non‐irrigated Kc from the literature to estimate ET. Results also indicated that more than 1 year of EC ET data was needed when establishing monthly Kc values because of annual variability in factors controlling ET, such as water availability. The new Kc values reported herein could be used as an estimate for urban non‐irrigated bahiagrass within similar climates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, we examined the year 2011 characteristics of energy flux partitioning and evapotranspiration of a sub‐alpine spruce forest underlain by permafrost on the Qinghai–Tibet Plateau (QPT). Energy balance closure on a half‐hourly basis was H + λE = 0.81 × (Rn ? G ? S) + 3.48 (W m?2) (r2 = 0.83, n = 14938), where H, λE, Rn, G and S are the sensible heat, latent heat, net radiation, soil heat and air‐column heat storage fluxes, respectively. Maximum H was higher than maximum λE, and H dominated the energy budget at midday during the whole year, even in summer time. However, the rainfall events significantly affected energy flux partitioning and evapotranspiration. The mean value of evaporative fraction (Λ = λE/(λE + H)) during the growth period on zero precipitation days and non‐zero precipitation days was 0.40 and 0.61, respectively. The mean daily evapotranspiration of this sub‐alpine forest during summer time was 2.56 mm day?1. The annual evapotranspiration and sublimation was 417 ± 8 mm year?1, which was very similar to the annual precipitation of 428 mm. Sublimation accounted for 7.1% (30 ± 2 mm year?1) of annual evapotranspiration and sublimation, indicating that the sublimation is not negligible in the annual water balance in sub‐alpine forests on the QPT. The low values of the Priestley–Taylor coefficient (α) and the very low value of the decoupling coefficient (Ω) during most of the growing season suggested low soil water content and conservative water loss in this sub‐alpine forest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Climate change is affecting the hydrology of high‐elevation mountain ecosystems, with implications for ecosystem functioning and water availability to downstream populations. We directly and continuously measured precipitation and evapotranspiration (ET) from both subalpine forest and alpine tundra portions of a single catchment, as well as discharge fluxes at the catchment outlet, to quantify the water balance of a mountainous, headwater catchment in Colorado, USA. Between 2008 and 2012, the water balance closure averaged 90% annually, and the catchment ET was the largest water output at 66% of precipitation. Alpine ET was greatest during the winter, in part because of sublimation from blowing snow, which contributed from 27% to 48% of the alpine, and 6% to 9% of the catchment water balance, respectively. The subalpine ET peaked in summer. Alpine areas generated the majority of the catchment discharge, despite covering only 31% of the catchment area. Although the average annual alpine runoff efficiency (discharge/precipitation; 40%) was greater than the subalpine runoff efficiency (19%), the subalpine runoff efficiency was more sensitive to changes in precipitation. Inter‐annual analysis of the evaporative and dryness indices revealed persistent moisture limitations at the catchment scale, although the alpine alternated between energy‐limited and water‐limited states in wet and dry years. Each ecosystem generally over‐generated discharge relative to that expected from a Budyko‐type model. The alpine and catchment water yields were relatively unaffected by annual meteorological variability, but this interpretation was dependent on the method used to quantify potential ET. Our results indicate that correctly accounting for dissimilar hydrological cycling above and below alpine treeline is critical to quantify the water balance of high‐elevation mountain catchments over periods of meteorological variability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Numerous models had been developed to predict the annual evapotranspiration (ET) in vegetated lands across various spatial scales. Fu's (Scientia Atmospherica Sinica, 5, 23–31) and Zhang's (Water Resources Research, 37, 701–708) ET simulation models have emerged as highly effective and have been widely used. However, both formulas have the non-quantitative parameters (m in Fu's model and w in Zhang's model). Based on the collected 1789 samples from global long-term hydrological studies, this study discovered significant relations between m (or w) and vegetation coverage or greenness in collected catchments. Then, we used these relations to qualify the parameters in both Zhang's and Fu's models. Results show that the ET estimation accuracies of Fu's (or Zhang's) model are significantly improved by about 13.49 mm (or 6.74 mm) for grassland and cropland, 38.52 mm (or 29.84 mm) for forest and shrub land (coverage<40%), 19.74 mm (or 16.17 mm) for mixed land (coverage<40%), respectively. However, Zhang's model shows higher errors compared with Fu's model, especially in regions with high m (or w) values, such as those with dense vegetations or P/E0 (annual precipitation to annual potential ET) smaller than 1.0. Additionally, this study also reveals that for regions with vegetation cover less than 40%, the annual ET is not only determined by vegetation types, but also relates to the sizes of vegetation-covered areas. Conversely, for regions with vegetation cover more than 40%, the annual ET is mainly determined by the vegetation density rather than vegetation types or vegetation coverage. Thus, linking m (or w) parameters with vegetation greenness allows leveraging remote sensing for forest management in data-scarce areas, safeguarding regional water resources. This study pioneers integrating vegetation-related indices with basin parameters, advocating for their crucial role in more effective hydrological modelling.  相似文献   

17.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A modified Jarvis–Stewart model of canopy transpiration (Ec) was tested over five ecosystems differing in climate, soil type and species composition. The aims of this study were to investigate the model's applicability over multiple ecosystems; to determine whether the number of model parameters could be reduced by assuming that site‐specific responses of Ec to solar radiation, vapour pressure deficit and soil moisture content vary little between sites; and to examine convergence of behaviour of canopy water‐use across multiple sites. This was accomplished by the following: (i) calibrating the model for each site to determine a set of site‐specific (SS) parameters, and (ii) calibrating the model for all sites simultaneously to determine a set of combined sites (CS) parameters. The performance of both models was compared with measured Ec data and a statistical benchmark using an artificial neural network (ANN). Both the CS and SS models performed well, explaining hourly and daily variation in Ec. The SS model produced slightly better model statistics [R2 = 0.75–0.91; model efficiency (ME) = 0.53–0.81; root mean square error (RMSE) = 0.0015–0.0280 mm h‐1] than the CS model (R2 = 0.68–0.87; ME = 0.45–0.72; RMSE = 0.0023–0.0164 mm h‐1). Both were highly comparable with the ANN (R2 = 0.77–0.90; ME = 0.58–0.80; RMSE = 0.0007–0.0122 mm h‐1). These results indicate that the response of canopy water‐use to abiotic drivers displayed significant convergence across sites, but the absolute magnitude of Ec was site specific. Period totals estimated with the modified Jarvis–Stewart model provided close approximations of observed totals, demonstrating the effectiveness of this model as a tool aiding water resource management. Analysis of the measured diel patterns of water use revealed significant nocturnal transpiration (9–18% of total water use by the canopy), but no Jarvis–Stewart formulations are able to capture this because of the dependence of water‐use on solar radiation, which is zero at night. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Natural floodplains are spatially heterogeneous and dynamic ecosystems but at the same time, a highly endangered landscape feature due to climate change and human impacts such as water storage, flood control and hydropower production. Flow is considered a master variable that shapes channel morphology and the heterogeneity, distribution, and turnover of floodplain habitats. Despite their highly dynamic nature, the relative abundance of different habitat elements (islands, gravel bars) in natural floodplains seems to remain relatively constant over ecological periods and is referred to as the shifting mosaic steady state concept. In this conceptual context, we analysed spatiotemporal changes in relative habitat abundance and channel complexity of an alpine floodplain from its near natural state in 1940 before water abstraction and levee construction until 2007 using historical aerial images. Within the first decades of impairment, the relative abundance of floodplain habitats that depend on flood and flow pulses such as parafluvial channels and islands shifted toward a greater abundance of terrestrial forest and grassland habitats. After 1986, the duration and frequencies of high‐precipitation events (>60 mm 24 h–1) triggering major, channel‐reworking floods increased substantially and caused a restructuring of the floodplain and decrease in the abundance of more terrestrial habitat types. These results are contrary to expectations of the shifting mosaic steady state concept yet suggest its potential application as an indicator of landscape transformation and human impacts on floodplain ecosystems. Last, the results raise the applied question as to whether an increased frequency of high flow events induced by climate change can contribute to floodplain restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Two‐component hydrograph separation was performed on 19 low‐to‐moderate intensity rainfall events in a 4·1‐km2 urban watershed to infer the relative and absolute contribution of surface runoff (e.g. new water) to stormflow generation between 2001 and 2003. The electrical conductivity (EC) of water was used as a continuous and inexpensive tracer, with order of magnitude differences in precipitation (12–46 µS/cm) and pre‐event streamwater EC values (520–1297 µS/cm). While new water accounted for most of the increased discharge during storms (61–117%), the contribution of new water to total discharge during events was typically lower (18–78%) and negatively correlated with antecedent stream discharge (r2 = 0·55, p < 0·01). The amount of new water was positively correlated with total rainfall (r2 = 0·77), but hydrograph separation results suggest that less than half (9–46%) of the total rainfall on impervious surfaces is rapidly routed to the stream channel as new water. Comparison of hydrograph separation results using non‐conservative tracers (EC and Si) and a conservative isotopic tracer (δD) for two events showed similar results and highlighted the potential application of EC as an inexpensive, high frequency tracer for hydrograph separation studies in urban catchments. The use of a simple tracer‐based approach may help hydrologists and watershed managers to better understand impervious surface runoff, stormflow generation and non‐point‐source pollutant loading to urban streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号