首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we extend the generalized likelihood uncertainty estimation (GLUE) technique to estimate spatially distributed uncertainty in models conditioned against binary pattern data contained in flood inundation maps. Untransformed binary pattern data already have been used within GLUE to estimate domain‐averaged (zero‐dimensional) likelihoods, yet the pattern information embedded within such sources has not been used to estimate distributed uncertainty. Where pattern information has been used to map distributed uncertainty it has been transformed into a continuous function prior to use, which may introduce additional errors. To solve this problem we use here ‘raw’ binary pattern data to define a zero‐dimensional global performance measure for each simulation in a Monte Carlo ensemble. Thereafter, for each pixel of the distributed model we evaluate the probability that this pixel was inundated. This probability is then weighted by the measure of global model performance, thus taking into account how well a given parameter set performs overall. The result is a distributed uncertainty measure mapped over real space. The advantage of the approach is that it both captures distributed uncertainty and contains information on global likelihood that can be used to condition predictions of further events for which observed data are not available. The technique is applied to the problem of flood inundation prediction at two test sites representing different hydrodynamic conditions. In both cases, the method reveals the spatial structure in simulation uncertainty and simultaneously enables mapping of flood probability predicted by the model. Spatially distributed uncertainty analysis is shown to contain information over and above that available from global performance measures. Overall, the paper highlights the different types of information that may be obtained from mappings of model uncertainty over real and n‐dimensional parameter spaces. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Remotely sensed land cover was used to generate spatially‐distributed friction coefficients for use in a two‐dimensional model of flood inundation. Such models are at the forefront of research into the prediction of river flooding. Standard practice, however, is to use single (static) friction coefficients on both the channel and floodplain, which are varied in a calibration procedure to provide a “best fit” to a known inundation extent. Spatially‐distributed friction provides a physically grounded estimate of friction that does not require fitting to a known inundation extent, but which can be fitted if desired. Remote sensing offers the opportunity to map these friction coefficients relatively straightforwardly and for low cost. Inundation was predicted using the LISFLOOD‐FP model for a reach on the River Nene, UK. Friction coefficients were produced from land cover predicted from Landsat TM imagery using both ML and fuzzy c‐means classifiction. The elevetion data used were from combined contour and differential global positioning system (GPS) elevation data. Predicted inundation using spatially‐distributed and static friction were compared. Spatially‐distributed friction had the greatest effect on the timing of flood inundation, but a small effect on predicted inundation extent. The results indicate that spatially‐distributed friction should be considered where the timing of initial flooding (e.g. for early warning) is important. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Guy Schumann  Paul Bates 《水文研究》2014,28(18):4928-4937
As the calibration and evaluation of flood inundation models are a prerequisite for their successful application, there is a clear need to ensure that the performance measures that quantify how well models match the available observations are fit for purpose. This paper evaluates the binary pattern performance measures that are frequently used to compare flood inundation models with observations of flood extent. This evaluation considers whether these measures are able to calibrate and evaluate model predictions in a credible and consistent way, i.e. identifying the underlying model behaviour for a number of different purposes such as comparing models of floods of different magnitudes or on different catchments. Through theoretical examples, it is shown that the binary pattern measures are not consistent for floods of different sizes, such that for the same vertical error in water level, a model of a flood of large magnitude appears to perform better than a model of a smaller magnitude flood. Further, the commonly used Critical Success Index (usually referred to as F<2 >) is biased in favour of overprediction of the flood extent, and is also biased towards correctly predicting areas of the domain with smaller topographic gradients. Consequently, it is recommended that future studies consider carefully the implications of reporting conclusions using these performance measures. Additionally, future research should consider whether a more robust and consistent analysis could be achieved by using elevation comparison methods instead. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Previously we have detailed an application of the generalized likelihood uncertainty estimation (GLUE) procedure to estimate spatially distributed uncertainty in models conditioned against binary pattern data contained in flood inundation maps. This method was applied to two sites where a single consistent synoptic image of inundation extent was available to test the simulation performance of the method. In this paper, we extend this to examine the predictive performance of the method for a reach of the River Severn, west‐central England. Uniquely for this reach, consistent inundation images of two major floods have been acquired from spaceborne synthetic aperture radars, as well as a high‐resolution digital elevation model derived using laser altimetry. These data thus allow rigorous split sample testing of the previous GLUE application. To achieve this, Monte Carlo analyses of parameter uncertainty within the GLUE framework are conducted for a typical hydraulic model applied to each flood event. The best 10% of parameter sets identified in each analysis are then used to map uncertainty in flood extent predictions using the method previously proposed for both an independent validation data set and a design flood. Finally, methods for combining the likelihood information derived from each Monte Carlo ensemble are examined to determine whether this has the potential to reduce uncertainty in spatially distributed measures of flood risk for a design flood. The results show that for this reach and these events, the method previously established is able to produce sharply defined flood risk maps that compare well with observed inundation extent. More generally, we show that even single, poor‐quality inundation extent images are useful in constraining hydraulic model calibrations and that values of effective friction parameters are broadly stationary between the two events simulated, most probably reflecting their similar hydraulics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Recent years have been marked by a continuous availability of spatial SAR data since the launch of the European remote sensing satellite (ERS-1) in 1991. Consequently, remote sensing techniques now offer an opportunity to map flood inundation fields caused by river overflow or waterlogging in environments characterized by frequent cloud cover. Indeed, inundation fields can clearly be seen on ERS-1 SAR images taken during flooding periods. However, such an identification can be constrained by the similarity in behaviour between water surfaces and other features of the landscape such as extended asphalt areas, permanent water bodies and less illuminated slopes. For consistent flood inundation extent mapping a more robust approach is required. This is provided by a conceptual flood inundation index that is physically sound in relation to radar imaging. Moreover, this index has proved to be useful for highlighting soils located within inundation fields and having significantly different internal drainage. The results achieved in the framework of the research must be seen in the context of intensive use of remote sensing data to support decision methods for sustainable management of land and water resources. Such decision support methods could be provided by river hydraulic models aimed at assessing environmental effects of inundation floods and at early flood warning systems. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
The performances of a finite volume model (SFV) and finite element model (TELEMAC‐2D) in reproducing inundation on a 16 km reach of the river Severn, United Kingdom, are compared. Predicted inundation extents are compared with 4 airborne synthetic aperture radar images of a major flood event in November 2000, and these are used to calibrate 2 values of Manning's n for the channel and floodplain. The four images are shown to have different capacities to constrain roughness parameters, with the image acquired at low flow rate doing better in determining these parameters than the image acquired at approximately peak flow. This is assigned to the valley filling nature of the flood and the associated insensitivity of flood extent to changes in water level. The level of skill demonstrated by the models, when compared with inundation derived using a horizontal water free surface, also increases as flow rate drops. The two models show markedly different behaviours to the calibration process, with TELEMAC showing less sensitivity and lower optimum values for Manning's n than SFV. When the models are used in predictive mode, calibrated against one image and predicting another, SFV performs better than TELEMAC. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The study investigates the capability of coarse resolution synthetic aperture radar (SAR) imagery to support flood inundation models. A hydraulic model of a 98‐km reach of the River Po (Northern Italy) was calibrated on the October 2000 high‐magnitude flood event with extensive and high‐quality field data. During the June 2008, low‐magnitude flood event a SAR image was acquired and processed in near real time (NRT) in order to provide adequate data for quick verification and recalibration of the hydraulic model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Deterministic flood inundation mapping is valuable for the investigation of detailed flood depth and extent. However, when these data are used for real‐time flood warning, uncertainty arises while encountering the difficulties of timely response, message interpretation and performance evaluation that makes statistical analysis necessary. By incorporating deterministic flood inundation map outputs statistically by means of logistic regression, this paper presents a probabilistic real‐time flood warning model determining region‐based flood probability directly from rainfall, being efficient in computation, clear in message, and valid in physical meaning. The calibration and validation of the probabilistic model show a satisfactory overall correctness rate, with the hit rate far surpassing the false alarm rate in issuing flood warning for historical events. Further analyses show that the probabilistic model is effective in evaluating the level of uncertainty lying within flood warning which can be reduced by several techniques proposed in order to improve warning performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Tools for accurately predicting environmental risks, such as the location and spatial extent of potential inundation, are not widely available. A dependence on calibration and a lack of available flood data have prevented the widespread application of existing hydrodynamic methods for predicting the extent of inundation. We use the height above the nearest drainage (HAND) terrain model to develop a simple static approach for mapping the potential extent of inundation that does not depend on flood observations and extends beyond methods for mapping low‐lying areas. While relying on the contour concept, the method utilizes drainage‐normalized topography and flowpaths to delineate the relative vertical distances (drop) to the nearest river. The HAND‐delineated relative drop is an effective distributed predictor of flood potential, which is directly related to the river stage height. We validated the new HAND contour approach using a flood event in Southern Brazil for which high‐resolution maps were available. The results indicated that the flood hazard‐mapping method accurately predicted the inundation extent of the channel carrying the flood wave and the channels influenced by flooding. For channels positioned outside of the flood‐wave area, the method overestimated the actual flood extent. As an original static assessment of floodwaters across the landscape, the HAND contour method could be used to map flood hazards in areas with poor information and could promote the development of new methods for predicting hydrological hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Flood inundation models have been recognized to be a valuable tool to reproduce flow dynamics in a given area and support decision‐making processes on flood management measures. In many cases, in the simulation of flood events, only the main river channel and the associated structures are represented within the model. However, during flood events involving lowland areas, the minor drainage network – and the associated hydraulic structures – may have an important role in conveying flow and determining which areas will be flooded. The objective of this study is to investigate whether – and to what extent – small hydraulic structures in drainage networks have an influence in flooding on lowland areas. The case study for this research is the 1990 flood event which occurred in the lowland plain of the Reno River, in Northern Italy. The study area is mainly used for agricultural purposes and has a drainage system with several small bridges and culverts. The influence of the minor hydraulic structures on flood dynamics was analyzed through a combined use of one‐dimensional (1D) and two‐dimensional (2D) hydraulic models. First, a number of detailed and simplified approaches to represent hydraulic structures in the computational grids were analyzed by means of the HECRAS 1D model. Second, these approaches were implemented and tested in several 2D simulations of the flood event. The simulated inundation extents and flood levels were then compared with the observed data and with each other. The analysis of results showed that simplified schematizations were sufficient to obtain good model predictions of peak inundation extent and flood levels, at least for the present case study. Moreover, the influence of the structures on the peak flood inundation extent and flood levels was found to be limited, whereas it showed to be more significant during the drainage phase of the flood. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Advances in remote sensing have enabled hydraulic models to run at fine scale resolutions, producing precise flood inundation predictions. However, running models at finer resolutions increase their computational expense, reducing the feasibility of running the multiple model realizations required to undertake uncertainty analysis. Furthermore, it is possible that precision gained by running fine scale models is smoothed out when treating models probabilistically. The aim of this paper is to determine the level of spatial complexity that is required when making probabilistic flood inundation predictions. The Imera basin, Sicily is used as a case study to assess how changing the spatial resolution of the hydraulic model LISFLOOD‐FP impacts on the skill of conditional probabilistic flood inundation maps given model parameter and boundary condition uncertainties. We find that model performance deteriorates at resolutions coarser than 50 m. This is predominantly caused by changes in flow pathways at coarser resolutions which lead to non‐stationarity in the optimum model parameters at different spatial resolutions. However, although it is still possible to produce probabilistic flood maps that contain a coherent outline of the flood extent at coarser resolutions, the reliability of these maps deteriorates at resolutions coarser than 100 m. Additionally, although the rejection of non‐behavioural models reduces the uncertainty in probabilistic flood maps the reliability of these maps is also reduced. Models with resolutions finer than 50 m offer little gain in performance yet are more than an order of magnitude computationally expensive which can become infeasible when undertaking probabilistic analysis. Furthermore, we show that using deterministic, high‐resolution flood maps can lead to a spurious precision that would be misleading and not representative of the overall uncertainties that are inherent in making inundation predictions. Copyright © 2015 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

12.
We compare two approaches to modelling floodplain inundation: a raster‐based approach, which uses a relatively simple process representation, with channel flows being resolved separately from the floodplain using either a kinematic or diffusive wave approximation, and a finite‐element hydraulic model aiming to solve the full two‐dimensional shallow‐water equations. A flood event on a short (c. 4 km) reach of the upper River Thames in the UK is simulated, the models being validated against inundation extent as determined from satellite synthetic aperture radar (SAR) imagery. The unconstrained friction parameters are found through a calibration procedure, where a measure of fit between predicted and observed shorelines is maximized. The raster and finite‐element models offer similar levels of performance, both classifying approximately 84% of the model domain correctly, compared with 65% for a simple planar prediction of water surface elevation. Further discrimination between models is not possible given the errors in the validation data. The simple raster‐based model is shown to have considerable advantages in terms of producing a straightforward calibration process, and being robust with respect to channel specification. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Flood hazard maps used to inform and build resilience in remote communities in the Terai region of southern Nepal are based on outdated and static digital elevation models (DEMs), which do not reflect dynamic river configuration or hydrology. Episodic changes in river course, sediment dynamics, and the distribution of flow down large bifurcation nodes can modify the extent of flooding in this region, but these processes are rarely considered in flood hazard assessment. Here, we develop a 2D hydrodynamic flood model of the Karnali River in the Terai region of west Nepal. A number of scenarios are tested examining different DEMs, variable bed elevations to simulate bed aggradation and incision, and updating bed elevations at a large bifurcation node to reflect field observations. By changing the age of the DEM used in the model, a 9.5% increase in inundation extent was observed for a 20-year flood discharge. Reducing horizontal DEM resolution alone resulted in a <1% change. Uniformly varying the bed elevation led to a 36% change in inundation extent. Finally, changes in bed elevation at the main bifurcation to reflect observed conditions resulted in the diversion of the majority of flow into the west branch, consistent with measured discharge ratios between the two branches, and a 32% change in inundation extent. Although the total flood inundation area was reduced (−4%), there was increased inundation along the west bank. Our results suggest that regular field measurements of bed elevation and updated DEMs following large sediment-generating events, and at topographically sensitive areas such as large river bifurcations, could help improve model inputs in future flood prediction models. This is particularly important following flood events carrying large sediment loads out of mountainous regions that could promote bed aggradation and channel switching across densely populated alluvial river systems and floodplains further downstream. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

14.
An ability to quantify the reliability of probabilistic flood inundation predictions is a requirement not only for guiding model development but also for their successful application. Probabilistic flood inundation predictions are usually produced by choosing a method of weighting the model parameter space, but previous study suggests that this choice leads to clear differences in inundation probabilities. This study aims to address the evaluation of the reliability of these probabilistic predictions. However, a lack of an adequate number of observations of flood inundation for a catchment limits the application of conventional methods of evaluating predictive reliability. Consequently, attempts have been made to assess the reliability of probabilistic predictions using multiple observations from a single flood event. Here, a LISFLOOD‐FP hydraulic model of an extreme (>1 in 1000 years) flood event in Cockermouth, UK, is constructed and calibrated using multiple performance measures from both peak flood wrack mark data and aerial photography captured post‐peak. These measures are used in weighting the parameter space to produce multiple probabilistic predictions for the event. Two methods of assessing the reliability of these probabilistic predictions using limited observations are utilized; an existing method assessing the binary pattern of flooding, and a method developed in this paper to assess predictions of water surface elevation. This study finds that the water surface elevation method has both a better diagnostic and discriminatory ability, but this result is likely to be sensitive to the unknown uncertainties in the upstream boundary condition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Flooding is one of the most costly natural disasters and thus mapping, modeling and forecasting flood events at various temporal and spatial scales is important for any flood risk mitigation plan, disaster relief services and the global (re-)insurance markets. Both computer models and observations (ground-based, airborne and Earth-orbiting) of flood processes and variables are of great value but the amount and quality of information available varies greatly with location, spatial scales and time. It is very well known that remote sensing of flooding, especially in the microwave region of the electromagnetic spectrum, can complement ground-based observations and be integrated with flood models to augment the amount of information available to end-users, decision-makers and scientists. This paper aims to provide a concise review of both the science and applications of microwave remote sensing of flood inundation, focusing mainly on synthetic aperture radar (SAR), in a variety of natural and man-made environments. Strengths and limitations are discussed and the paper will conclude with a brief account on perspectives and emerging technologies.  相似文献   

18.
Vegetation plays a critical role in modifying inundation and flow patterns in salt marshes. In this study, the effects of vegetation are derived and implemented in a high‐resolution, subgrid model recently developed for simulating salt marsh hydrodynamics. Vegetation‐induced drag forces are taken into account as momentum sink terms. The model is then applied to simulate the flooding and draining processes in a meso‐tidal salt marsh, both with and without vegetation effects. Marsh inundation and flow patterns are significantly changed with the presence of vegetation. A smaller area of inundation occurs when vegetation is considered. Tides propagate both on the platform and through the channels when vegetation is absent, whereas flows concentrate mainly in channels when vegetation is present. Local inundation on vegetated platforms is caused mainly by water flux spilled from nearby channels, with a flow direction perpendicular to the channel edges, whereas inundation on bare platforms has contributions from both local spilled‐over water flux and remote advection from adjacent platforms. The flooding characteristics predicted by the model showed a significant difference between higher marsh and lower marsh, which is consistent with the wetlands classification by the National Wetlands Inventory (NWI). The flooding characteristics and spatial distribution of hydroperiod are also highly correlated with the vegetation zonation patterns observed in Google Earth imagery. Regarding the strong interaction between flow, vegetation and geomorphology, the conclusion highlights the importance of including vegetation in the modeling of salt marsh dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Recent research modelling floodplain inundation processes has concentrated on issues surrounding the level of physical, topographical, and numerical solver complexity needed to represent floodplain flows adequately. However, during flooding episodes the channel typically still conveys the bulk of the flow. Despite this, the effect of channel physical processes and topographic complexity on model results has been largely unexplored. To address this, the impact of channel cross‐section geometry, channel long‐profile variability and the representation of hydraulic structures on floodplain inundation are explored using a coupled dynamic 1D‐2D hydraulic model (ESTRY‐TUFLOW) of the Carlisle floods of January 2005. These simulations are compared with those from a simplified 1D‐2D model, LISFLOOD‐FP. In this case, the simpler model is sufficient to simulate the far‐field peak flood elevations. However, comparison of channel dynamics suggests that the full shallow water approximation used by ESTRY‐TUFLOW gives a more robust performance when models calibrated on maximum floodplain water elevations are used to predict channel water levels. Examination of the response of ESTRY‐TUFLOW to variations in channel geometric complexity shows that downstream variations in the channel long profile are more important than cross‐section variability for obtaining a dataset‐independent calibration. The results show, in general, that as model physical complexity is increased, calibrated parameters become less ‘effective’, and as a consequence, the values of performance measures reduce less rapidly away from the optimum value. This means that often more physically complex models are less likely to yield different optimum parameter values when calibrated on different datasets resulting in a more robust numerical model. Lastly, the inclusion of bridge structures can simulate substantial local backwatering effects, but the variability in observed water and wrack marks is such that it is not possible to discern the effect of the bridges at this site in the post‐event observational dataset. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
D. Yu  S. N. Lane 《水文研究》2006,20(7):1541-1565
High‐resolution data obtained from airborne remote sensing is increasing opportunities for representation of small‐scale structural elements (e.g. walls, buildings) in complex floodplain systems using two‐dimensional (2D) models of flood inundation. At the same time, 2D inundation models have been developed and shown to provide good predictions of flood inundation extent, with respect to both full solution of the depth‐averaged Navier–Stokes equations and simplified diffusion‐wave models. However, these models have yet to be applied extensively to urban areas. This paper applies a 2D raster‐based diffusion‐wave model to determine patterns of fluvial flood inundation in urban areas using high‐resolution topographic data and explores the effects of spatial resolution upon estimated inundation extent and flow routing process. Model response shows that even relatively small changes in model resolution have considerable effects on the predicted inundation extent and the timing of flood inundation. Timing sensitivity would be expected, given the relatively poor representation of inertial processes in a diffusion‐wave model. Sensitivity to inundation extent is more surprising, but is associated with: (1) the smoothing effect of mesh coarsening upon input topographical data; (2) poorer representation of both cell blockage and surface routing processes as the mesh is coarsened, where the flow routing is especially complex; and (3) the effects of (1) and (2) upon water levels and velocities, which in turn determine which parts of the floodplain the flow can actually travel to. It is shown that the combined effects of wetting and roughness parameters can compensate in part for a coarser mesh resolution. However, the coarser the resolution, the poorer the ability to control the inundation process, as these parameters not only affect the speed, but also the direction of wetting. Thus, high‐resolution data will need to be coupled to a more sophisticated representation of the inundation process in order to obtain effective predictions of flood inundation extent. This is explored in a companion paper. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号