首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a need for more isotopic tracer studies at the mesoscale to extend our understanding of catchment transit times and their associated controls beyond smaller experimental sites (typically < 10 km2). This paper, therefore, examines the isotope hydrology of six mesoscale (101–102 km2) sub‐catchments of the 2000 km2 basin of the River Dee in northern Scotland. All the catchments were upland in character (mean altitude > 400 m) with similar suites of soil coverage (predominantly regosols, gleys, peats and podzols), although the relative distribution varied, as did the presence of other landscape features such as aquifers in Quaternary drifts and lakes. Input–output relationships of δ18O in precipitation and runoff revealed contrasting responses and differential damping which were broadly consistent with catchment characteristics. The mean transit times (MTTs) were estimated using a convolution integral with a Gamma distribution as the transfer function. These varied from 528 days in the most responsive catchments to > 800 days in catchments where the tracer signature was most damped. Shorter MTTs were found in sub‐catchments with a higher percentage cover of responsive soils (i.e. regosols, gleys and peats), whilst sub‐catchments with longest MTTs had a higher coverage of free‐draining podzolic and alluvial soils, as well as significant amount of stored water either in fluvio‐glacial aquifers or large lakes. The MTT of all six catchments had the same order of magnitude; this contrasts with studies in the Scottish Highlands with smaller (<10 km2) catchments where MTT has been shown to vary between 60 and 1200 days. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Long‐term river flow data and one year of isotopic tracer data in a nested 749 km2 catchment were analysed conjunctively to evaluate the relationships between hydrometric statistics, transit times, and catchment characteristics. The catchment comprised two distinct geomorphic provinces; upland headwaters draining glaciated landscapes underlain by crystalline geology and lowland headwaters draining a major regional sandstone aquifer. In the uplands, flow regimes were ‘flashy’ with high runoff coefficients for storm hydrographs, steep recession curves and strong nonlinearity in event responses. In the lowlands, runoff coefficients were low, recessions less steep, and event responses more linear. Flow data from the catchment outfall showing damping of these extremes, but was most strongly influenced by the upland headwaters where precipitation was highest. The damping of variability in stable water isotopes between precipitation inputs and streamflow outputs reflected this; with upland tributaries least damped and lowland tributaries most damped. Attempts to quantify the mean transit times of the sampling points met with mixed success; partly reflecting the short run (1 year) of data, but mainly as a result of the marked damping in lowland sites. As a consequence, MTT estimates can only be said to be in the order of a few years in upland sites, but are probably decadal or greater in lowland tributaries. Again, the catchment outfall averages these extremes, but is more similar to the upland headwaters. Despite the difficulties in quantifying MTTs, it is clear that they, like the hydrological response, primarily reflect the dominant control of catchment soil cover, which in turn is determined by geology and glacial history. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Seasonal oxygen-18 variations in precipitation, throughfall, soil water, spring flow and stream baseflow were analysed to compare the hydrology of two forested basins in West Virginia (WV) (34 and 39 ha) and one in Pennsylvania (PA) (1134 ha). Precipitation and throughfall were measured with funnel/bottle samplers, soil water with ceramic-cup suction lysimeters and spring flow/baseflows by grab and automatic sampling during the period March 1989 to March 1990. Isotopic damping depths, or depths required to reduce the amplitude of subsurface oxygen-18 fluctuations to 37% of the surface amplitude, were generally similar for soil water on the larger PA basin, and baseflows and headwater spring flows on the smaller WV basins. Computed annual isotopic damping depths for these water sources averaged 49 cm using soil depth as the flow path length. The equivalent annual mean hydraulic diffusivity for the soil flow paths was 21 cm2 d−1. Mean transit times, based upon an assumed exponential distribution of transit times, ranged from 0·2 y for soil water at a depth of 30 cm on the larger catchment, to 1·1–1·3 y for most spring flows and 1·4–1·6 y for baseflows on the smaller catchments. Baseflow on the larger PA basin and flow of one spring on a small WV basin showed no detectable seasonal fluctuations in oxygen-18, indicating flow emanated from sources with mean transit times greater than about 5 y. Based upon this soil flow path approach, it was concluded that seasonal oxygen-18 variations can be used to infer mean annual isotopic damping depths and diffusivities for soil depths up to approximately 170 cm. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Precipitation and streamwater were analysed weekly for δ18O in seven tributaries and five main stem sites of a 2100 km2 catchment; >60% of it is upland in character. Precipitation δ18O followed seasonal patterns ranging from –20‰ in winter to –4‰ in summer. Seasonality was also evident in stream waters, though much more damped. Mean transit times (MTTs) were estimated using δ18O input–output relationships in a convolution integral with a gamma distribution. The MTTs were relatively similar (528–830 days): tributaries exhibited a greater range, being shorter in catchments with montane topography and hydrologically responsive soils, and longer where catchments have significant water storage. Along the main stem, MTTs increased modestly from 621 to 741 days. This indicates that montane headwaters are the dominant sources of runoff along the main stem of the river system. Models suggest that around 10% of runoff has transit times of less than two weeks during higher flows whilst older (>10-year old) water sustains low flows contributing around 5% of runoff.

Citation Speed, M., Tetzlaff, D., Hrachowitz, M. & Soulsby, C. (2011) Evolution of the spatial and temporal characteristics of the isotope hydrology of a montane river basin. Hydrol. Sci. J. 56(3), 426–442  相似文献   

5.
Stable isotope tracers of δ18O and δ2H are increasingly being applied in the study of water cycling in regional-scale watersheds in which human activities, like river regulation, are important influences. In 2015, δ18O and δ2H were integrated into a water quality survey in the Muskoka River Watershed with the aim to provide new regional-scale characterization of isotope hydrology in the 5,100-km2 watershed located on the Canadian Shield in central Ontario, Canada. The forest dominated region includes ~78,000 ha of lakes, 42 water control structures, and 11 generating stations, categorized as “run of river.” Within the watershed, stable isotope tracers have long been integrated into hydrologic process studies of both headwater catchments and lakes. Here, monthly surveys of δ18O and δ2H in river flow were conducted in the watershed between April 2015 and November 2016 (173 surface water samples from 10 river stations). Temporal patterns of stable isotopes in river water reflect seasonal influences of snowmelt and summer-time evaporative fractionation. Spatial patterns, including differences observed during extreme flood levels experienced in the spring of 2016, reflect variation in source contributions to river flow (e.g., snowmelt or groundwater versus evaporatively enriched lake storage), suggesting more local influences (e.g., glacial outwash deposits). Evidence of combined influences of source mixing and evaporative fractionation could, in future, support application of tracer-enabled hydrological modelling, estimation of mean transit times and, as such, contribute to studies of water quality and water resources in the region.  相似文献   

6.
Water transpired by trees has long been assumed to be sourced from the same subsurface water stocks that contribute to groundwater recharge and streamflow. However, recent investigations using dual water stable isotopes have shown an apparent ecohydrological separation between tree‐transpired water and stream water. Here we present evidence for such ecohydrological separation in two tropical environments in Puerto Rico where precipitation seasonality is relatively low and where precipitation is positively correlated with primary productivity. We determined the stable isotope signature of xylem water of 30 mahogany (Swietenia spp.) trees sampled during two periods with contrasting moisture status. Our results suggest that the separation between transpiration water and groundwater recharge/streamflow water might be related less to the temporal phasing of hydrologic inputs and primary productivity, and more to the fundamental processes that drive evaporative isotopic enrichment of residual soil water within the soil matrix. The lack of an evaporative signature of both groundwater and streams in the study area suggests that these water balance components have a water source that is transported quickly to deeper subsurface storage compared to waters that trees use. A Bayesian mixing model used to partition source water proportions of xylem water showed that groundwater contribution was greater for valley‐bottom, riparian trees than for ridge‐top trees. Groundwater contribution was also greater at the xeric site than at the mesic–hydric site. These model results (1) underline the utility of a simple linear mixing model, implemented in a Bayesian inference framework, in quantifying source water contributions at sites with contrasting physiographic characteristics, and (2) highlight the informed judgement that should be made in interpreting mixing model results, of import particularly in surveying groundwater use patterns by vegetation from regional to global scales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Expansion of impervious surface cover results in “flashy” hydrologic response, elevated flood risk, and degraded water quality in urban watersheds. Stormwater management ponds (SWMPs) are often engineered into stream networks to mitigate these issues. A clearer understanding of how water is stored and released from SWMPs and SWMP-treated catchments is required to better represent these engineered systems in hydrological and water quality models of urban and urbanizing watersheds. Stable water isotopes were used to compare water age in SWMPs and SWMP-treated catchments in an urbanizing watershed. We sampled water biweekly from two SWMPs and five stream sites with varying land cover and stormwater control in their catchments. Two inverse transit time proxies (damping ratio and young water fraction) were computed along with the mean transit time (MTT) by sine–wave fitting for each SWMP and stream site using the δ18O and δ2H data. Water entering the SWMPs was consistently older (224 and 177 days) than water in or exiting the ponds (ranging from 46 to 91 days and 39 to 67 days, respectively). This finding is likely due to a combination of groundwater infiltration into broken sewer pipes that transport water into the ponds and a bias toward baseflow sampling. At the catchment scale, detention provided by SWMPs was not found to be more significant than the interactive effects of impervious cover, surficial geology, land use proportions, and catchment size in determining MTT. Overall, surficial geology explained the most variation in MTT among the seven sites. This study illustrates the potential for isotope-based approaches of water age to provide information on individual SWMP functioning and the influence of SWMPs on catchment-scale water movement.  相似文献   

8.
Headwaters are generally assumed to contribute the majority of water to downstream users, but how much water, of what quality and where it is generated are rarely known in the humid tropics. Here, using monthly monitoring in the data scarce (2,370 km2) San Carlos catchment in northeastern Costa Rica, we determined runoff-area relationships linked to geochemical and isotope tracers. We established 46 monitoring sites covering the full range of climatic, land use and geological gradients in the catchment. Regression and cluster analysis revealed unique spatial patterns and hydrologically functional landscape units. These units were used for seasonal and annual Bayesian tracer mixing models to assess spatial water source contributions to the outlet. Generally, the Bayesian mixing analysis showed that the chemical and isotopic imprint at the outlet is throughout the year dominated by the adjacent lowland catchments (68%) with much less tracer influence from the headwaters. However, the headwater catchments contributed the bulk of water and tracers to the outlet during the dry season (>50%) despite covering less than half of the total catchment area. Additionally, flow volumes seemed to be linearly scaled by area maintaining a link between the headwaters and the outlet particularly during high flows of the rainy season. Stable isotopes indicated mean recharge elevations above the mean catchment altitude, which further supports that headwaters were the primary source of downstream water. Our spatially detailed “snap-shot” sampling enabled a viable alternative source of large-scale hydrological process knowledge in the humid tropics with limited data availability.  相似文献   

9.
We calibrated an integrated flow–tracer model to simulate spatially distributed isotope time series in stream water in a 7.9‐km2 catchment with an urban area of 13%. The model used flux tracking to estimate the time‐varying age of stream water at the outlet and both urbanized (1.7 km2) and non‐urban (4.5 km2) sub‐catchments over a 2.5‐year period. This included extended wet and dry spells where precipitation equated to >10‐year return periods. Modelling indicated that stream water draining the most urbanized tributary was youngest with a mean transit time (MTT) of 171 days compared with 456 days in the non‐urban tributary. For the larger catchment, the MTT was 280 days. Here, the response of urban contributing areas dominated smaller and more moderate runoff events, but rural contributions dominated during the wettest periods, giving a bi‐modal distribution of water ages. Whilst the approach needs refining for sub‐daily time steps, it provides a basis for projecting the effects of urbanization on stream water transit times and their spatial aggregation. This offers a novel approach for understanding the cumulative impacts of urbanization on stream water quantity and quality, which can contribute to more sustainable management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Tracer studies have been key to unravelling catchment hydrological processes, yet most insights have been gained in environments with relatively low human impact. We investigated the spatial variability of stream isotopes and water ages to infer dominant flow paths in a ~10-km2 nested catchment in a disturbed, predominantly agricultural environment in Scotland. We collected long-term (>5 years) stable isotope data of precipitation, artificial drainage, and four streams with varying soil and land use types in their catchment areas. Using a gamma model, Mean Transit Times (MTTs) were then estimated in order to understand the spatial variability of controls on water ages. Despite contrasting catchment characteristics, we found that MTTs in the streams were generally very similar and short (<1 year). MTTs of water in artificial drains were even shorter, ranging between 1 to 10 months for a typical field drain and <0.5 to 1 month for a country road drain. At the catchment scale, lack of heterogeneity in the response could be explained by the extensive artificial surface and subsurface drainage, “short-circuiting” younger water to the streams during storms. Under such conditions, additional intense disturbance associated with highway construction during the study period had no major effect on the stream isotope dynamics. Supplementary short-term (~14 months) sampling of mobile soil water in dominant soil-land use units also revealed that agricultural practices (ploughing of poorly draining soils and soil compaction due to grazing on freely draining soils) resulted in subtle MTT variations in soil water in the upper profile. Overall, the isotope dynamics and inferred MTTs suggest that the evolution of stream water ages in such a complex human-influenced environment are largely related to near-surface soil processes and the dominant soil management practices. This has direct implications for understanding and managing flood risk and contaminant transport in such environments.  相似文献   

11.
A. Smith  C. Welch  T. Stadnyk 《水文研究》2016,30(21):3871-3884
Quantifying streamflow sources within remote, data scarce, Boreal catchments remains a significant challenge because of limited accessibility and complex, flat topography. The coupled use of hydrometric and isotopic data has previously been shown to facilitate quantification of streamflow sources, but application has generally been limited to small basins and short time scales. A lumped flow‐isotope model was used to estimate contributing streamflow sources (soil, ground, and wetland water) over a four‐year period in two large nested headwater catchments (Sapochi and Odei Rivers) in northern Manitoba, Canada. On average, the primary streamflow source was estimated as soil water (60%) in the Sapochi River, and groundwater (54%) in the Odei River. A strong seasonal influence was observed: soil water was the primary streamflow source in summer, changing to groundwater and wetlands during the winter. Interannual variability in streamflow sources was strongly linked to the presence or absence of late summer rainfall. The greatest uncertainties in source quantification were identified during the spring freshets and high precipitation events, and hence, simulations may be improved through explicit representation of the soil freeze/thaw process and data collection during this period. Assessment of primary streamflow components and qualitative uncertainty estimation using coupled isotope‐flow modelling is an effective method for first‐order identification of streamflow sources in data sparse remote headwaters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This study has investigated the use of the artificial sweetener acesulfame and the magnetic resonance imaging contrast agent gadolinium as quantitative tracers for river water infiltration into shallow groundwater. The influence of a river on alluvial groundwater in a subalpine catchment in western Europe has been assessed using the ‘classical’ hydrochemical tracer chloride and the trace contaminants acesulfame and anthropogenic gadolinium. Mixing ratios for riverine bank filtrate with ambient groundwater and the uncertainties associated with the temporal and spatial tracer variability were calculated using acesulfame and gadolinium and compared with those obtained using chloride. The temporal variability of tracer concentrations in river water of gadolinium (standard deviation SD: 63%) and acesulfame (SD: 71%) both exceeded that of chloride (SD: 27%), and this was identified as the main source of uncertainty in the mixing analysis. Similar spatial distributions were detected in the groundwater for chloride and gadolinium, but not for acesulfame. Mixing analyses using acesulfame resulted in calculated mixing ratios that differed from those obtained using gadolinium and chloride by up to 83% and 92%, respectively. At the investigated site, which had oxic conditions and moderate temperatures, acesulfame was found to be a less reliable tracer than either gadolinium or chloride, probably because of natural attenuation and input from other sources. There was no statistically significant difference between the mixing ratios obtained using chloride or gadolinium, the mixing ratios obtained using gadolinium were 40–50% lower than those obtained using chloride. This is mainly due to a bias of the mean gadolinium concentration in river water towards higher values. In view of the uncertainties of the two tracers, neither could be preferred over the other for the quantification of bank filtrate in groundwater. At this specific site gadolinium was able to reliably identify river water infiltration and was a more precise tracer than chloride at low mixing ratios (<20%), because of the exclusive occurrence of gadolinium in river water and its high dynamic range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Determining mean transit times in headwater catchments is critical for understanding catchment functioning and understanding their responses to changes in landuse or climate. Determining whether mean transit times (MTTs) correlate with drainage density, slope angle, area, or land cover permits a better understanding of the controls on water flow through catchments and allows first-order predictions of MTTs in other catchments to be made. This study assesses whether there are identifiable controls on MTTs determined using 3H in headwater catchments of southeast Australia. Despite MTTs at baseflow varying from a few years to >100 years, it was difficult to predict MTTs using single or groups of readily-measured catchment attributes. The lack of readily-identifiable correlations hampers the prediction of MTTs in adjacent catchments even where these have similar geology, land use, and topography. The long MTTs of the Australian headwater catchments are probably in part due to the catchments having high storage volumes in deeply-weathered regolith, combined with low recharge rates due to high evapotranspiration. However, the difficulty in estimating storage volumes at the catchment scale hampers the use of this parameter to estimate MTTs. The runoff coefficient (the fraction of rainfall exported via the stream) is probably also controlled by evapotranspiration and recharge rates. Correlations between the runoff coefficient and MTTs in individual catchments allow predictions of MTTs in nearby catchments to be made. MTTs are shorter in high rainfall periods as the catchments wet up and shallow water stores are mobilized. Despite the contribution of younger water, the major ion geochemistry in individual catchments commonly does not correlate with MTTs, probably reflecting heterogeneous reactions and varying degrees of evapotranspiration. Documenting MTTs in catchments with high storage volumes and/or low recharge rates elsewhere is important for understanding MTTs in diverse environments.  相似文献   

14.
15.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

16.
Tracer investigations were combined with a geographical information system (GIS) analysis of the 31 km2 Girnock catchment (Cairngorm Mountains, Scotland) in order to understand hydrological functioning by identifying dominant runoff sources and estimating mean residence times. The catchment has a complex geology, soil cover and topography. Gran alkalinity was used to demonstrate that catchment geology has a dominant influence on baseflow chemistry, but flow paths originating in acidic horizons in the upper soil profiles controlled stormflow alkalinity. Chemically based hydrograph separations at the catchment scale indicated that ~30% of annual runoff was derived from groundwater sources. Similar contributions (23–36%) were estimated for virtually all major sub‐basins. δ18O of precipitation (mean: ? 9·4‰; range: ? 16·1 to ? 5·0‰) and stream waters (mean: ? 9·1‰; range: ? 11·6 to ? 7·4‰) were used to assess mean catchment and sub‐basin residence times, which were in the order ~4–6 months. GIS analysis showed that these tracer‐based diagnostic features of catchment functioning were consistent with the landscape organization of the catchment. Soil and HOST (Hydrology of Soil Type) maps indicated that the catchment and individual sub‐basins were dominated by hydrologically responsive soils, such as peats (Histosol), peaty gleys (Histic Gleysols) and rankers (Umbric Leptosols and Histosols). Soil cover (in combination with a topographic index) predicted extensive areas of saturation that probably expand during hydrological events, thus providing a high degree of hydrological connectivity between catchment hillslopes and stream channel network. This was validated by aerial photographic interpretation and groundtruthing. These characteristics of hydrological functioning (i.e. dominance of responsive hydrological pathways and short residence times) dictate that the catchment is sensitive to land use change impacts on the quality and quantity of streamflows. It is suggested that such conceptualization of hydrological functioning using tracer‐validated GIS analysis can play an important role in the sustainable management of river basins. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
P. Rodgers  C. Soulsby  S. Waldron 《水文研究》2005,19(11):2291-2307
δ18O measurements of precipitation and stream waters were used as a natural tracer to investigate hydrological pathways and residence times in the River Feshie, a complex mesoscale (231 km2) catchment in the Cairngorm Mountains of Scotland. Precipitation δ18O exhibited strong seasonal variation over the 2001–02 hydrological year, ranging from −6·9‰ in the summer, to −12·0‰ during winter snowfalls (mean δ18O −9·59‰). Although damped, this seasonality was reflected in stream water outputs at seven sampling sites in the catchment, allowing δ18O variations to be used to infer hydrological source areas. Thus, stream water δ18O was generally controlled by a seasonally variable storm flow end member, mixing with groundwater of more constant isotopic composition. Periodic regression analysis allowed the differences in this mixing process between monitoring subcatchments to be assessed more quantitatively to provide a preliminary estimate of mean stream water residence time. This demonstrated the importance of responsive hydrological pathways associated with peat and shallow alpine soils in the headwater subcatchments in producing seasonally variable runoff with short mean residence times (33–113 days). In contrast, other tributaries with more freely draining soils and larger groundwater storage in shallow aquifers provided more effective mixing of variable precipitation inputs, resulting in longer residence time estimates (178–445 days). The mean residence time of runoff leaving the Feshie catchment reflected an integration of these contrasting influences (110–200 days). These insights from δ18O measurements extend the hydrological understanding of the Feshie catchment gained from other hydrochemical tracers, and demonstrate the utility of isotope tracers in investigating hydrological processes at the mesoscale. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

Calibration of hydrological models is challenging in high-latitude regions where hydrometric data are minimal. Process-based models are needed to predict future changes in water supply, yet often with high amounts of uncertainty, in part, from poor calibrations. We demonstrate the utility of stable isotopes (18O, 2H) as data employed for improving the amount and type of information available for model calibration using the isoWATFLOODTM model. We show that additional information added to calibration does not hurt model performance and can improve simulation of water volume. Isotope-enabled calibration improves long-term validation over traditional flow-only calibrated models and offers additional feedback on internal flowpaths and hydrological storages that can be useful for informing internal water distribution and model parameterization. The inclusion of isotope data in model calibration reduces the number of realistic parameter combinations, resulting in more constrained model parameter ranges and improved long-term simulation of large-scale water balance.  相似文献   

19.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

20.
为探讨海南东部历史时期的气候环境变化,2015年于海南岛东海岸小海潟湖中采集了一根长73 cm的柱状样(XH15-02),在年代学(210Pb和AMS14C)测试的基础上,开展了多环境代用指标(总有机碳(TOC)、总氮(TN)、有机碳稳定同位素、干密度等)的测试和分析.结果表明,XH15-02柱状样TOC与TN含量有很好的相关性,C/N比值在10.41~23.33之间变化,有机碳稳定同位素(δ13Corg)值在-25.14‰~-23.29‰之间.通过对多气候环境代用指标的分析,以及与历史文献资料和其他自然代用指标的综合比对,认为XH15-02孔岩芯沉积记录了研究区过去1100多年来较为丰富的气候环境、台风活动以及人类活动影响等信息.近千年来,小海潟湖沉积有机物主要以陆源输入为主,据估算该岩芯有机碳陆生来源约占47.00%~73.43%,但在不同时期变化幅度较大,该陆源有机碳含量变化可能主要反映了历史时期海南东部地区的干湿变化历史;自1850年以来,XH15-02孔岩芯沉积通量的显著增加与当地人口的快速增长历史一致,反映了研究区近二百年来可能受到的人类对自然界的开发活动影响强烈;多个具有显著偏正δ13Corg记录的时期同史料记载以及周边区域地质记录中的"大风"、"海溢"、"风暴"等事件发生时间较为相近,可能揭示了历史时期的台风或高海平面事件,进而认为小海潟湖沉积在重建历史时期海南地区台风活动等方面具有很大潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号