共查询到20条相似文献,搜索用时 15 毫秒
1.
Mohammad Merheb Roger Moussa François Colin Charles Perrin Nicolas Baghdadi 《水文科学杂志》2013,58(14):2520-2539
ABSTRACTThis work examines 140 hydrological studies conducted in the Mediterranean region. It identifies key characteristics of the hydrological responses of Mediterranean catchments at various time scales and compares different methods and modelling approaches used for individual-catchment studies. The study area is divided into the northwestern (NWM), eastern (EM) and southern (SM) Mediterranean. The analysis indicates regional discrepancies in which the NWM shows the most extreme rainfall regime. A tendency for reduced water resources driven by both anthropogenic and climatic pressures and a more extreme rainfall regime are also noticeable. Catchments show very heterogeneous responses over time and space, resulting in limitations in hydrological modelling and large uncertainties in predictions. However, few models have been developed to address these issues. Additional studies are necessary to improve the knowledge of Mediterranean hydrological features and to account for regional specificities.
Editor D. Koutsoyiannis Associate editor A. Efstratiadis 相似文献
2.
In single‐event deterministic design flood estimation methods, estimates of the peak discharge are based on a single and representative catchment response time parameter. In small catchments, a simplified convolution process between a single‐observed hyetograph and hydrograph is generally used to estimate time parameters such as the time to peak (TP), time of concentration (TC), and lag time (TL) to reflect the “observed” catchment response time. However, such simplification is neither practical nor applicable in medium to large heterogeneous catchments, where antecedent moisture from previous rainfall events and spatially non‐uniform rainfall hyetographs can result in multi‐peaked hydrographs. In addition, the paucity of rainfall data at sub‐daily timescales further limits the reliable estimation of catchment responses using observed hyetographs and hydrographs at these catchment scales. This paper presents the development of a new and consistent approach to estimate catchment response times, expressed as the time to peak (TPx) obtained directly from observed streamflow data. The relationships between catchment response time parameters and conceptualised triangular‐shaped hydrograph approximations and linear catchment response functions are investigated in four climatologically regions of South Africa. Flood event characteristics using primary streamflow data from 74 flow‐gauging stations were extracted and analysed to derive unique relationships between peak discharge, baseflow, direct runoff, and catchment response time in terms of TPx. The TPx parameters are estimated from observed streamflow data using three different methods: (a) duration of total net rise of a multipeaked hydrograph, (b) triangular‐shaped direct runoff hydrograph approximations, and (c) linear catchment response functions. The results show that for design hydrology and for the derivation of empirical equations to estimate catchment response times in ungauged catchments, the catchment TPx should be estimated from both the use of an average catchment TPx value computed using either Methods (a) or (b) and a linear catchment response function as used in Method (c). The use of the different methods in combination is not only practical but is also objective and has consistent results. 相似文献
3.
Hydrological trends and the evolution of catchment research in the Alptal valley,central Switzerland
Manfred Stähli Jan Seibert James W. Kirchner Jana von Freyberg Ilja van Meerveld 《水文研究》2021,35(4):e14113
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions. 相似文献
4.
Hydrological responses to conservation practices in a catchment of the Loess Plateau,China 总被引:2,自引:0,他引:2
Since the late 1950s a series of soil conservation practices have been implemented in the Loess Plateau. It is important to assess the impact of these practices on hydrology at the catchment scale. The Jialuhe River catchment, a tributary of the Yellow River, with a drainage area of 1117 km2 in the Loess Plateau, was chosen to investigate the hydrological responses to conservation practices. Parametric and non‐parametric Mann–Kendall tests were utilized to detect trends in hydrological variables or their residuals. Relationships between precipitation and hydrological variables were developed to remove the impact of precipitation variability. Significant linear decreasing trends in annual surface runoff and baseflow were identified during the treated period from 1967 to 1989, and the rate of reduction was 1·30 and 0·48 mm/year, respectively. As result, mean annual surface runoff and baseflow decreased by 32% over the period of 1967 to 1989. Seasonal runoff also decreased during the treated period with the greatest reduction occurring in summer and the smallest reduction in winter. The response of high and low daily flow to conservation practices was greater than average flows. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
Temporal and spatial rainfall patterns were analysed to describe the distribution of daily rainfall across a medium‐sized (379km2) tropical catchment. Investigations were carried out to assess whether a climatological variogram model was appropriate for mapping rainfall taking into consideration the changing rainfall characteristics through the wet season. Exploratory, frequency and moving average analyses of 30 years' daily precipitation data were used to describe the reliability and structure of the rainfall regime. Four phases in the wet season were distinguished, with the peak period (mid‐August to mid‐September) representing the wettest period. A low‐cost rain gauge network of 36 plastic gauges with overflow reservoirs was installed and monitored to obtain spatially distributed rainfall data. Geostatistical techniques were used to develop global and wet season phase climatological variograms. The unscaled climatological variograms were cross‐validated and compared using a range of rainfall events. Ordinary Kriging was used as the interpolation method. The global climatological variogram performed better, and was used to optimize the number and location of rain gauges in the network. The research showed that although distinct wet season phases could be established based on the temporal analysis of daily rainfall characteristics, the interpolation of daily rainfall across a medium‐sized catchment based on spatial analysis was better served by using the global rather than the wet season phase climatological variogram model. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
6.
Geochemically based hydrograph separation techniques were used in a preliminary assessment to infer how runoff processes change with landscape characteristics and spatial scale (1–233 km2) within a mesoscale catchment in upland Scotland. A two‐component end‐member mixing analysis (EMMA) used Gran alkalinity as an assumed conservative tracer. Analysis indicated that, at all scales investigated, acidic overland flow and shallow subsurface storm flows from the peaty soils covering the catchment headwaters dominated storm runoff generation. The estimated groundwater contribution to annual runoff varied from 30% in the smallest (ca 1 km2) peat‐dominated headwater catchment with limited groundwater storage, to >60% in larger catchments (>30 km2) with greater coverage of more freely draining soils and more extensive aquifers in alluvium and other drift. This simple approach offers a useful, integrated conceptualization of the hydrological functioning in a mesoscale catchment, which can be tested and further refined by focused modelling and process‐based research. However, even as it stands, the simple conceptualization of system behaviour will have significant utility as a tool for communicating hydrological issues in a range of planning and management decisions. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
7.
João Pedro Nunes Léonard Bernard-Jannin María Luz Rodríguez-Blanco Anne-Karine Boulet Juliana Marisa Santos Jan Jacob Keizer 《水文研究》2020,34(26):5210-5228
The extensive afforestation of the Mediterranean rim of Europe in recent decades has increased the number of wildfire disturbances on hydrological and sediment processes, but the impacts on headwater catchments is still poorly understood, especially when compared with the previous agricultural landscape. This work monitored an agroforestry catchment in the north-western Iberian Peninsula, with plantation forests mixed with traditional agriculture using soil conservation practices, for one year before the fire and for three years afterwards, during which period the burnt area was ploughed and reforested. During this period, continuous data was collected for meteorology, streamflow and sediment concentration at the outlet, erosion features were mapped and measured after major rainfall events, and channel sediment dynamics were monitored downstream from the agricultural and the burnt forest area. Data from 202 rainfall events with over 10 mm was analysed in detail. Results show that the fire led to a notable impact on sediment processes during the first two post-fire years, but not on streamflow processes; this despite the small size of the burnt area (10% of the catchment) and the occurrence of a severe drought in the first year after the fire. During this period, soil loss at the burnt forest slopes was much larger than that at most traditionally managed fields, and, ultimately, led to sediment exhaustion. At the catchment scale, storm characteristics were the dominant factor behind streamflow and sediment yield both before and after the fire. However, the data indicated a shift from detachment-limited sediment yield before the fire, to transport-limited sediment yield afterwards, with important increases in streamflow sediment concentration. This indicates that even small fires can temporarily change sediment processes in agroforestry catchments, with potential negative consequences for downstream water quality. 相似文献
8.
The hydrological behaviour of the cultivated Féfé catchment (17·8 ha) on the tropical volcanic island of Guadeloupe was studied to identify flow paths, to quantify water fluxes, and finally, to build a lumped model to simulate discharge and piezometer levels. The approach combined two steps, an experimental step and a modelling step, which covered two time scales, the annual and the storm event scale. The hydrological measurements were conducted over 2 years. The Féfé catchment is characterized by heavy rainfall (4229 mm year?1) on permeable Andosols; the results showed that underground flow paths involved two overlapping aquifers, and that the annual water balance in 2003 was shared among outflows of the deep aquifer (42%), evapotranspiration (31%), and streamflow (27%). On the event scale, the surface runoff coefficient ranges between 6·2% and 24·4% depending on antecedent dry or wet moisture conditions. Hortonian overland flow predominated over subsurface and saturation overland flow processes. Recharge of the shallow aquifer is mainly governed by a constant infiltration capacity of the Andosols with depth in the vadose zone. Outflows of this shallow aquifer were the baseflow of the main stream and the recharge of the deep aquifer. Volcanic deposits at Féfé promoted the underground flow path, and cultivated areas seemed to explain the high stormflow values relative to other tropical small catchments under rain forest. A conceptual lumped model integrating runoff, infiltration, evapotranspiration, and fluctuations of the two overlapping aquifers was developed. The model has six parameters and was calibrated and validated on the hydrograph at the outlet and on the two piezometers of the shallow and the deep aquifers. The results show fair to good agreement between measured and simulated variables, and consequently, the model was consistent with the main hydrological processes observed from experimental results in wet conditions. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
9.
Abstract The hydrological response of a small agroforestry catchment in northwest Spain (Corbeira catchment, 16 km2) is analysed, with particular focus on rainfall events. Fifty-four rainfall–runoff events, from December 2004 to September 2007, were used to analyse the principal hydrological patterns and show which factors best explain the hydrological response. The nonlinearity between rainfall and runoff showed that the variability in the hydrological response of the catchment was linked to the seasonal dynamics of the rainfall and, to a lesser extent, to evapotranspiration. The runoff coefficient, estimated as the ratio between direct runoff and rainfall volume, on an event basis, was analysed as a function of rainfall characteristics (amount and intensity) and the initial catchment state conditions prior to an event, such as pre-event baseflow and antecedent rainfall index. The results revealed that the hydrological response depends both on the soil humidity conditions at the start of the event and on rainfall amount, whereas rainfall intensity presented only a significant correlation with discharge increment. The antecedent conditions seem to be a key point in runoff production, and they explain much of the response. The hydrographs are characterized by a steep rising limb, a relatively narrow peak discharge and slow recession limb. These data and the observations suggest that the subsurface flow is the dominant runoff process. Editor Z.W. Kundzewicz; Associate editor T. Wagener Citation Rodríguez-Blanco, M.L., Taboada-Castro, M.M. and Taboada-Castro, M.T., 2012. Rainfall–runoff response and event-based runoff coefficients in a humid area (northwest Spain). Hydrological Sciences Journal, 57 (3), 445–459. 相似文献
10.
A study was carried out on a rural catchment located in northwest Spain to examine the sediment yield from the catchment by measuring suspended sediments during rainfall events. Within the catchment regular surveys were conducted to obtain data on the suspended sediment sources. Important variations in sediment load were detected at event scale (0·3–21·0 Mg); some of these can be explained in terms of event size, antecedent conditions, rainfall distribution and soil surface erosion. To study the variables controlling suspended sediment yield during the events in the catchment, several event and pre‐event variables were calculated for all events. The sediment load is strongly influenced by discharge variables. During the events discharge–suspended sediments were also analysed. When the soil surface was unprotected, the formation of rills and ephemeral gullies on agricultural land at the catchment head was an important source of suspended sediments in the catchment. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
《水文科学杂志》2013,58(3):629-639
Abstract The lower Araguás catchment, central Pyrenees, is characterized by extensive badlands (25% of the total catchment), whereas the upper catchment is covered by dense plantation forest. The catchment (45 ha) has been monitored since October 2005 with the aim of studying its hydrological response. The 44 floods recorded over this period were analysed to identify the factors that control the rainfall—runoff relationship. The first relevant feature of the catchment was its responsiveness. The catchment reacted to all rainfall events, but the irregular nature of the hydrological response was the most characteristic feature of the response. No single variable could explain the response of the Araguás catchment. It was found that stormflow coefficients mainly depend on the combination of rainfall volume and antecedent baseflow. A significant correlation was observed between maximum rainfall intensity and peak flow values. The shapes of the different hydrographs are very similar, regardless of the peak flow magnitude; they show a short time lag, relatively narrow peak flow, and steep recession limb. This indicates a large contribution by overland flow, resulting mainly from the generation of infiltration excess runoff in badland areas. 相似文献
12.
Relating nitrogen export patterns from a mixed land use catchment in NW Spain with rainfall and streamflow 下载免费PDF全文
M. L. Rodríguez‐Blanco M. M. Taboada‐Castro M. T. Taboada‐Castro J. L. Oropeza‐Mota 《水文研究》2015,29(12):2720-2730
The temporal variability in nitrogen (N) transport in the Corbeira agroforestry catchment (NW Spain) was analysed from October 2004 to September 2008. Nitrate (NO3–N) and total Kjeldahl nitrogen (TKN) loads and concentrations were determined at various timescales (annual, seasonal and event). The results revealed a strong intra‐annual and inter‐annual variability in N transport influenced by weather patterns and consequently by the hydrological regime. Mean annual export of total N in the catchment was 5.5 kg ha?1 year?1, with NO3–N being the dominant form. Runoff events comprised 10% of the study period but contributed 40 and 61% of the total NO3–N and TKN loads, respectively. The NO3–N and TKN concentrations were higher during runoff events than under baseflow conditions, pointing to diffuse sources of N. The mobilization of TKN during runoff events was attributed to surface runoff, while NO3–N might be related to subsurface and groundwater flow. Runoff events were characterized by high variability in N loads and concentrations. Higher variability was observed in N loads than in N concentrations, indicating that event magnitude plays an important role in N transport in this catchment; event magnitude explained approximately 96% of the NO3–N load. However, a combination of variables related to runoff event intensity (rainfall, discharge increase and kinetic energy) explained only 66% of the TKN load. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
Reducing soil erosion and sediment delivery into rivers is a major aim for land management in New Zealand. Therefore, it is important to identify areas of sediment generation and their relationship to in-stream suspended sediment concentrations and water quality attributes. It is possible to infer and assess sediment sources and dynamics using storm event suspended sediment concentration-discharge hysteresis shape and loop direction. Research in small catchments has achieved some success; however, research in larger (>103 km2) catchments has shown the inherent difficulty of interpreting hysteresis patterns at larger scales. In this paper, we use a nested, long-term suspended sediment monitoring program across a large catchment (3,903 km2: Manawatū in New Zealand) to address these challenges. We evaluate the hysteresis patterns of five major tributaries (subcatchment areas 329–1,298 km2) of the Manawatū River together with the hysteresis patterns at the gauged catchment outlet. Hysteresis patterns of the Manawatū subcatchments can be characterized as predominantly clockwise, that is, high hysteresis index (HI) value. Larger storms (discharge >2 × 107 m3) increase the likelihood of clockwise hysteresis directions, whereas smaller storms (discharge <2 × 107 m3) are more likely to be anticlockwise. The link between suspended sediment concentration-discharge hysteresis and subcatchment sediment sources becomes increasingly attenuated within the larger subcatchments. High antecedent discharge negatively correlates to HI values, suggesting conditions immediately before the storm have an influence on whether the catchment is “primed” or “exhausted” with available sediment. The different storm categories indicate that within this catchment, whereas hysteresis patterns vary due to the spatial origin of discharge and sediment to some extent, storm magnitude has a stronger impact on hysteresis dynamics than spatial origin. 相似文献
14.
Ana L. Londero Jean P. G. Minella Fabio J. A. Schneider Dinis Deuschle Gustavo H. Merten Olivier Evrard Madalena Boeni 《水文研究》2021,35(7):e14286
No-till (NT) is a soil management system designed to protect soil resources from water erosion and provide numerous benefits compared to conventional tillage through the increase of organic matter inputs into the soil. However, NT in isolation is not sufficient to control erosion processes caused by an excessive production of surface runoff. This study evaluated soil losses on agricultural hillslopes under no-till characterized by contrasted water, soil, and crop management conditions. To this end, water and soil losses were monitored between 2014 and 2018 at two scales, including four macroplots (0.6 ha; 27 events) and two paired zero-order catchments (2.4 ha; 63 events). The resulting dataset covered a wide range of rainfall conditions that occurred in contrasted soil, crop, and runoff management conditions. Hyetographs, hydrographs, and sedigraphs were constructed, and these data were used to evaluate the impact of management on sediment yields, including that of terraces, scarification, and phytomass on sediment yield. The installation of terraces reduced sediment yield by 58.7%, mainly through surface runoff control. Crop management including an increased phytomass input efficiently controlled soil losses (63%), although it did not reduce runoff volume and peak flow. In contrast, scarification had no impact on runoff and soil losses. The current research demonstrated the need to combine the installation of terraces and leaving a high amount of phytomass on the soil to control surface runoff and erosion and reduce sediment yield. The current research therefore reinforces the relevance of the monitoring strategy conducted at the scale of macroplots and zero-order catchments to evaluate the impact of contrasted water, soil, and crop management methods and select the most effective conservation agriculture practices. 相似文献
15.
Despite uncertainties and errors in measurement, observed peak discharges are the best estimate of the true peak discharge from a catchment. However, in ungauged catchments, the catchment response time is a fundamental input to all methods of estimating peak discharges; hence, errors in estimated catchment response time directly impact on estimated peak discharges. In South Africa, this is particularly the case in ungauged medium to large catchments where practitioners are limited to use empirical methods that were calibrated on small catchments not located in South Africa. The time to peak (TP), time of concentration (TC) and lag time (TL) are internationally the most frequently used catchment response time parameters and are normally estimated using either hydraulic or empirical methods. Almost 95% of all the time parameter estimation methods developed internationally are empirically based. This paper presents the derivation and verification of empirical TP equations in a pilot scale study using 74 catchments located in four climatologically different regions of South Africa, with catchment areas ranging from 20 km2 to 35 000 km2. The objective is to develop unique relationships between observed TP values and key climatological and geomorphological catchment predictor variables in order to estimate catchment TP values at ungauged catchments. The results show that the derived empirical TP equation(s) meet the requirement of consistency and ease of application. Independent verification tests confirmed the consistency, while the statistically significant independent predictor variables included in the regressions provide a good estimation of catchment response times and are also easy to determine by practitioners when required for future applications in ungauged catchments. It is recommended that the methodology used in this study should be expanded to other catchments to enable the development of a regional approach to improve estimation of time parameters on a national‐scale. However, such a national‐scale application would not only increase the confidence in using the suggested methodology and equation(s) in South Africa, but also highlights that a similar approach could be adopted internationally. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
16.
Hydrological response to expected future changes in land use and climate in the Samin catchment (278 km2) in Java, Indonesia, was simulated using the Soil and Water Assessment Tool model. We analysed changes between the baseline period 1983–2005 and the future period 2030–2050 under both land-use change and climate change. We used the outputs of a bias-corrected regional climate model and six global climate models to include climate model uncertainty. The results show that land-use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual streamflow and surface runoff. The findings of this study will be useful for water resource managers to mitigate future risks associated with land-use and climate changes in the study catchment. 相似文献
17.
Streamflow response in Boreal Plains catchments depends on hydrological connectivity between forested uplands, lakes, and peatlands, and their hydrogeomorphic setting. Expected future drying of the Boreal Plains ecozone is expected to reduce hydrological connectivity of landscape units. To better understand run‐off generation during dry periods, we determined whether peatland and groundwater connectivity can dampen expected future water deficits in forests and lakes. We studied Pine Fen Creek catchment in the Boreal Plains ecozone of central Saskatchewan, Canada, which has a large, valley‐bottom, terminally positioned peatland, two lakes, and forested uplands. A shorter intensive study permitted a more detailed partitioning of water inputs and outputs within the catchment during the low flow period, and an assessment of a 10‐year data set provided insight into the function of the peatland over a range of climate conditions. Using a water balance approach, we learned that two key processes regulate flow of Pine Fen Creek. The cumulative impact of landscape unit hydrological connectivity and the peatland's hydrological functional state were needed to understand catchment response. There was evidence of a run‐off threshold which, when crossed, changed the peatland's hydrological function from transmission to run‐off generation. Results also suggest the peatland should behave more often as a transmitter of groundwater than as a generator of run‐off under a drier climate future, owing to a reduced water supply. 相似文献
18.
AbstractTransfer function models of the rainfall–runoff relationship with various complexities are developed to investigate the hydrological behaviour of a tropical peat catchment that has undergone continuous drainage for a long time. The study reveals that a linear transfer function model of order one and noise term of ARIMA (1,0,0) best represents the monthly rainfall–runoff relationship of a drained peat catchment. The best-fitted transfer function model is capable of illustrating the cumulative hydrological effects of the catchment when subjected to drainage. Transfer function models of daily rainfall–runoff relationships for each year of the period 1983–1993 are also developed to decipher the changes in hydrological behaviour of the catchment due to drainage. The results show that the amount of rain water temporarily stored in the peat soil decreased and the catchment has become more responsive to rainfall over the study period.Editor Z.W. Kundzewicz; Associate editor D. HughesCitation Katimon, A., Shahid, S., Abd Wahab, A.K., and Shabri, A., 2013. Hydrological behaviour of a drained agricultural peat catchment in the tropics. 2: Time series transfer function modelling approach. Hydrological Sciences Journal, 58 (6), 1310–1325. 相似文献
19.
Assessing catchment runoff response remains a key research frontier because of limitations in current observational techniques to fully characterize water source areas and transit times in diverse geographical environments. Here, we report a study that combines empirical data with modelling to identify dominant runoff processes in a sparsely monitored humid tropical catchment. The analysis integrated isotope tracers into conceptual rainfall–runoff models of varying complexity (from 5 to 11 calibrated parameters) that are able to simulate discharge and tracer concentrations and track the evolving age of stream water exiting the catchment. The model structures can be seen as competing hypotheses of catchment functioning and were simultaneously calibrated against uncertain streamflow gaugings and a 2‐year daily isotope rainfall–runoff record. Comparison of the models was facilitated using global parameter sensitivity analysis and the resulting effect on calibration. We show that a variety of tested model structures reproduced water and tracer dynamics in stream, but the simpler models failed to adequately reproduce both. The resulting water age distributions of the tested models varied significantly with little similarity between the stream water age and stored water age distributions. The sensitivity analysis revealed that only some of the more complex models (from eight parameters) could be better constrained to infer more plausible water age distributions and catchment storage estimates. These models indicated that the age of water stored in the catchment is generally older compared with the age of water fluxes, with evapotranspiration age being younger compared with streamflow. However, the water age distributions followed a similar temporal behaviour dominated by climatic seasonality. Stream water ages increased during the dry season (greater than 1 year) and decreased with increased streamflow (a few weeks old) during the wet season. We further show that the ratios of the streamwater age to stored water age distribution and the water age distribution of actual evapotranspiration to the stored water age distribution from constrained models could potentially serve as useful hydrological indicators of catchment functioning. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
20.
AbstractLarge errors in peak discharge estimates at catchment scales can be ascribed to errors in the estimation of catchment response time. The time parameters most frequently used to express catchment response time are the time of concentration (TC), lag time (TL) and time to peak (TP). This paper presents a review of the time parameter estimation methods used internationally, with selected comparisons in medium and large catchments in the C5 secondary drainage region in South Africa. The comparison of different time parameter estimation methods with recommended methods used in South Africa confirmed that the application of empirical methods, with no local correction factors, beyond their original developmental regions, must be avoided. The TC is recognized as the most frequently used time parameter, followed by TL. In acknowledging this, as well as the basic assumptions of the approximations TL = 0.6TC and TC ≈ TP, along with the similarity between the definitions of the TP and the conceptual TC, it was evident that the latter two time parameters should be further investigated to develop an alternative approach to estimate representative response times that result in improved estimates of peak discharge at these catchment scales.
Editor Z.W. Kundzewicz; Associate editor Qiang Zhang 相似文献