首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial scale effect on sediment concentration in runoff has received little attention despite numerous studies on sediment yield or sediment delivery ratio in the context of multiple spatial scales. We have addressed this issue for hilly areas of the Loess Plateau, north China where fluvial processes are mainly dominated by hyperconcentrated flows. The data on 717 flow events observed at 17 gauging stations and two runoff experimental plots, all located in the 3906 km2 Dalihe watershed, are presented. The combination of the downstream scour of hyperconcentrated flows and the downstream dilution, which is mainly caused by the base flow and is strengthened as a result of the strong patchy storms, determines the spatial change of sediment concentration in runoff during flood events. At the watershed scale, the scouring effect takes predominance first but is subordinate to the downstream dilution with a further increase in spatial scale. As a result, the event mean sediment concentration first increases following a power function with drainage basin area and then declines at the drainage basin area of about 700 km2. The power function in combination with the proportional model of the runoff‐sediment yield relationship we proposed before was used to establish the sediment‐yield model, which is neither the physical‐based model nor the regression model. This model, with only two variables (runoff depth and drainage basin area) and two parameters, can provide fairly accurate prediction of event sediment yield with model efficiency over 0·95 if small events with runoff depth lower than 1 mm are excluded. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The magnitude and frequency of regional extreme precipitation events may have variability under climate change. This study investigates the time–space variability and statistical probability characteristics of extreme precipitation under climate change in the Haihe River Basin. Hydrological alteration diagnosis methods are implemented to detect the occurrence time, style and degree of alteration such as trend and jump in the extreme precipitation series, and stationarity and serial independence are tested prior to frequency analysis. Then, the historical extreme precipitation frequency and spatio‐temporal variations analyses are conducted via generalized extreme value and generalized Pareto distributions. Furthermore, the occurrence frequency of extreme precipitation events in future is analysed on the basis of the Fourth Assessment Report of the Intergovermental Panel on Climate Change multi‐mode climate models under different greenhouse gases emission scenarios (SRES‐A2, A1B and B1). Results indicate that (1) in the past, alteration of extreme precipitation mainly occurred in the area north of 38°N. Decreasing trends of extreme precipitation are detected at most stations, whereas jump alteration is not obvious at most stations. (2) Spatial variation of estimated extreme precipitation under different return periods shows similarity. Bounded by the Taihang Mountain–Yan Mountain, extreme rainfall in the Haihe River Basin gradually reduces from the southeast to the northwest, which is consistent with the geographical features of the Haihe River Basin. (3) In the future, extreme precipitation with return period 5–20 years accounts for a significant portion of the total occurrence times. The frequency of extreme precipitation events has an increase trend under A1B and A2 scenarios. The total occurrence times of extreme precipitation under A1B senario are not more than that under B1 senario until the 2030s. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
利用三峡库区35个台站1961-2010年汛期(5-9月)的逐日降水量资料,首先定义不同台站的极端降水量阈值,统计各站近50 a逐年汛期极端降水事件的发生频次,进而分析其时空变化特征.结果表明:三峡库区汛期极端降水事件发生频次的最主要空间模态是主体一致性,同时存在东西和南北相反变化的差异.三峡库区汛期极端降水事件发生频次具有较大的空间差异,可分为具有不同变化特点的5个主要异常区.滑动t检验表明,三峡库区西南部区代表站巴南的极端降水事件在1974年后发生了一次由偏多转为偏少的突变,北部区代表站北碚在1981年后和1993年后分别发生了由偏少转为偏多和由偏多到偏少的突变,中部区代表站武隆在1984年后发生了一次由偏多转为偏少的突变.结合最大熵谱和功率谱分析表明,近50 a来各分区汛期极端降水事件发生频次的周期振荡不太一致,三峡库区东北部区代表站宜昌、北部区代表站北碚和中部区代表站武隆分别存在5、2.4和8.3 a的显著周期.  相似文献   

4.
Rapid population growth and increased economic activity impose an urgent challenge on the sustainability of water resources in Beijing. Understanding the spatial and temporal variability of precipitation is of the upmost importance in order to sustain the region's water resources. Two time series, one long term (1724–2010) from a single meteorological station and a shorter time series (1980–2010) from 20 different meteorological stations within the Beijing area, were analysed using Linear Regression, Moving Average, Mann–Kendall, Rescaled Range and Spatial Interpolation methods. Results from both the long‐ and short‐term meteorological data show a mean annual precipitation rate of 600 mm and 540 mm respectively. Annual precipitation rates have decreased during the 21st century by an estimated 100 mm or 16% in comparison to the 1990s. The 1980–2010 data show an increase in precipitation during the early 1990s followed by a sharp decrease during the subsequent years. The change of annual precipitation with time is more random and diverse in comparison to space. The main local impact factors (terrain, urbanization and elevation) and how they work on the local precipitation especially the spatial diversity are identified qualitatively. Generally speaking, (1) the annual precipitation of the plain area is more than that of the mountainous area (terrain effect), (2) the annual precipitation of the urban area in the plain area is obviously more than that of the surrounding suburb area (urbanization effect) and (3) the annual precipitation of the lower location is approximately more than that of the higher location (elevation effect). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Measurements of temporal variations in soil detachability under different land uses are badly needed to develop new algorithms or evaluate the existing ones for temporal adjustment of soil detachability in continuous soil erosion models. Few studies have been conducted in the Loess Plateau to quantify temporal variations in detachment rate of runoff under different land uses. The objectives of this study were to investigate the temporal variations of soil detachment rate under different land uses and to further identify the potential factors causing the change in detachment rate in the Loess Plateau. Undisturbed soil samples were collected in the fields of arable land (millet, soybean, corn, and potato), grassland, shrub land, wasteland, and woodland and tested in a laboratory flume under a constant hydraulic condition. The measurements started in mid‐April and ended in early October, 2006. The results showed that soil detachment rate of each land use fluctuated considerably over time. Distinctive temporal variation in detachment rate was found throughout the summer growing season of measurement in each land use. The maximum detachment rates of different land uses varied from 0·019 to 0·490 kg m–2 s–1 and the minimum detachment rates ranged from 0·004 to 0·092 kg m–2 s–1. Statistical analysis using a paired‐samples t‐test indicated that variations in soil detachment rate differed significantly at the 0·05 level between land uses in most cases. The major factors responsible for the temporal variation of soil detachment were tillage operations (such as planting, ploughing, weeding, harvesting), soil consolidation, and root growth. The influence of tillage operations on soil detachment depended on the degree of soil disturbance caused by the operations. The consolidation of the topsoil over time after tillage was reflected by increases in soil bulk density and soil cohesion. As soil bulk density and cohesion increased, detachment rate decreased. The impact of root density was inconclusive in this study. Further studies are needed to quantify the effects of root density on temporal variations of soil detachment. This work provides useful information for developing temporal adjustments to soil detachment rate in continuous soil erosion models in the Loess Plateau. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.  相似文献   

7.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   

8.
Soil and water conservation measures including terracing, afforestation, construction of sediment‐trapping dams, and the ‘Grain for Green Program’ have been extensively implemented in the Yanhe River watershed, of the Loess Plateau, China, over the last six decades, and have resulted in large‐scale land use and land cover changes. This study examined the trends and shifts in streamflow regime over the period of 1953–2010 and relates them to changes in land use and soil and water conservation and to the climatic factors of precipitation and air temperature. The non‐parametric Mann–Kendall test and the Pettitt test were used to identify trends and shifts in streamflow and base flow. A method based on precipitation and potential evaporation was used to evaluate the impacts of climate variability and changes in non‐climate factors changes on annual streamflow. A significant decrease (p = 0.01) in annual streamflow was observed related to a significant change point in 1996, mostly because of significant decreases in streamflow (p = 0.01) in the July to September periods in subsequent years. The annual base flow showed no significant trend from 1953 to 2010 and no change point year, mostly because there were no significant seasonal trends, except for significant decreases (p = 0.05) in the July to September periods. There was no significant trend for precipitation over the studied time period, and no change point was detected. The air temperature showed a significant increasing trend (p < 0.01), and 1986 (p < 0.01) was the change point year. The climate variability, as measured by precipitation and temperature, and non‐climate factors including land use changes and soil and water conservation were estimated to have contributed almost equally to the reduction in annual streamflow. Soil and water conservation practices, including biological measures (e.g. revegetation, planting trees and grass) and engineering measures (such as fish‐scale pits, horizontal trenches, and sediment‐trapping dams) play an important role in reduction of the conversion of rainfall to run‐off. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, a transient rainfall infiltration and grid‐based regional slope‐stability model (TRIGRS) was implemented in a case study of Yan'an City, Northwest China. In this area, widespread shallow landslides were triggered by the 12 July 2013 exceptional rainstorm event. A high‐resolution DEM, soil parameters from in‐situ and laboratory measurements, water table depths, the maximum depth of precipitation infiltration and rain‐gauge‐corrected precipitation of the event, were used as inputs in the TRIGRS model. Shallow landslides triggered on the same day were used to evaluate the modeling results. The summarized results are as follows: (i) The characteristics and distribution of thirty‐five shallow landslides triggered by the 12 July 2013 rainfall event were identified in the study area and all were classified as shallow landslides with the maximum depth, area and volume less than 3 m, 200 m2 and 1000 m3, respectively, (ii) Four intermediate factor of safety (FS) maps were generated using the TRIGRS model to represent the scenarios 6, 12, 18 and 24 hours after the storm event. The area with FS < 1 increased with the rainfall duration. The percentage of the area with FS < 1 was 0.2%, 3.3%, 3.8% and 5.1% for the four stages, respectively. Twenty‐four hours after the rainstorm, TRIGRS predicted that 1255 grid cells failed, which is consistent with the field data. (iii) TRIGRS generated more satisfactory results at a given precipitation threshold than SINMAP, which is ideal for landslide hazard zoning for land‐use planning at the regional scale. Comparison results showed that TRIGRS is more useful for landslide prediction for a certain precipitation threshold, also in the regional scale. (iv) Analysis of the responses of loess slope prone to slope failure after different precipitation scenarios revealed that loess slopes are particularly sensitive to extended periods of heavy precipitation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Motivated by recent extreme flow events in the Mataquito River located in the Mediterranean region of Chile, we performed a detailed trend analysis of critical hydroclimatic variables based on observed daily flow, precipitation and temperature within the basin. For the period 1976–2008, positive trends in temperature were observed, especially during spring and summer months. At the same time, we found negative trends in the frequency and intensity of precipitation, especially during spring months. We observed an increasing difference between average streamflow in the rainy season as compared to the snowmelt season. Part of this trend is caused by larger flows during autumn months, although no positive precipitation trends are observed for these months. Finally, significant reductions in minimum flow during spring/summer and a disproportionate concentration of high-flow events occurring in the last 10 years were also identified. These high-flow events tend to happen during autumn months, and are associated with high precipitation and high minimum temperatures. Based on a simple assessment of changes in irrigated agriculture and land use, we concluded that other non-climatic factors seem not to be as relevant to the detected flow trends. All these results are in accord with future climate change scenarios that show an increase in temperature, a reduction in average precipitation and a reduction in snow accumulation. Such future scenarios could seriously hamper the development of economic activities in this basin, exemplifying also a fate that may be shared by other similar basins in Chile and in other regions of the world.

Editor Z.W. Kundzewicz

Citation Vicuña, S., Gironás, J., Meza, F.J., Cruzat, M.L., Jelinek, M., Bustos, E., Poblete, D., and Bambach, N., 2013. Exploring possible connections between hydrological extreme events and climate change in central south Chile. Hydrological Sciences Journal, 58 (8), 1598–1619.  相似文献   

11.
Jun Xiao  Fei Zhang  Zhangdong Jin 《水文研究》2016,30(25):4855-4869
Hydrochemistry methods were used to decipher the weathering and geochemical processes controlling solute acquisition of river waters in the dry season in the middle Loess Plateau (MLP), one of the most severely eroded areas and turbid riverine systems in the world. River waters were neutral to slightly alkaline with pH varying from 7.6 to 9.6. The total dissolved solids decreased from northwest to southeast with a mean value of 804 mg/l, much higher than the global average and other large rivers in China. Ternary diagram showed that river waters were dominated by Na+, HCO3?, and Cl? with the main water‐type of HCO3?–Cl?–Na+. Saturation index values, Mg2+, Ca2+, and HCO3? analyses indicated the preferential Ca2+ removal by calcite precipitation. Gibbs plots and stoichiometry plots indicated that the dissolved solutes were mainly derived from rock weathering with minor anthropogenic and atmospheric inputs. Samples in the northwestern basin are also influenced by evaporation. A forward model of mass budget calculation showed that, owing to high soluble characteristics, evaporite dissolution was a major feature of river waters and contributed 41% to the total dissolved cations on average, while carbonate and silicate weathering contributed 28%,and 25% on average, respectively. Besides evaporite dissolution, cation exchange is also responsible for the high concentrations of Na+ in river water. Spatial variations showed that evaporite dissolution and silicate weathering were higher in the northern basin, whereas carbonate weathering was higher in the southern basin. Different from most rivers in the world, the physical erosion rates (varying from 117.7 to 4116.6 t/km2y) are much higher than the chemical weathering rates (varying from 3.54 to 6.76 t/km2y) in the MLP because of the loose structure of loess and poor vegetation in the basin. In the future, studies on comparison of water geochemistry in different seasons and on influence of different types of land use and soil salinization on water geochemistry, denudation rates, and water quality should be strengthened in the MLP. These results shed some lights on processes responsible for modern loess weathering and also indicate the importance of time‐series sampling strategy for river water chemistry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Historical trends in Florida temperature and precipitation   总被引:1,自引:0,他引:1  
Because of its low topographic relief, unique hydrology, and the large interannual variability of precipitation, Florida is especially vulnerable to climate change. In this paper, we investigate a comprehensive collection of climate metrics to study historical trends in both averages and extremes of precipitation and temperature in the state. The data investigated consist of long‐term records (1892–2008) of precipitation and raw (unadjusted) temperature at 32 stations distributed throughout the state. To evaluate trends in climate metrics, we use an iterative pre‐whitening method, which aims to separate positive autocorrelation from trend present in time series. Results show a general decrease in wet season precipitation, most evident for the month of May and possibly tied to a delayed onset of the wet season. In contrast, there seems to be an increase in the number of wet days during the dry season, especially during November through January. We found that the number of dog days (above 26.7 °C) during the year and during the wet season has increased at many locations. For the post‐1950 period, a widespread decrease in the daily temperature range (DTR) is observed mainly because of increased daily minimum temperature (Tmin). Although we did not attempt to formally attribute these trends to natural versus anthropogenic causes, we find that the urban heat island effect is at least partially responsible for the increase in Tmin and its corresponding decrease in DTR at urbanized stations compared with nearby rural stations. In the future, a formal trend attribution study should be conducted for the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short‐duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub‐hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth‐Duration‐Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscaling Experiment for Europe area ensemble simulations at a ~12 km spatial resolution, for the current period and 2 future horizons under the Representative Concentration Pathways 8.5 scenario. Extreme events at the daily scale were first investigated by comparing the quantiles estimated from rain gauge observations and Regional Climate Model outputs. Second, we implemented a temporal downscaling approach to estimate rainfall for sub‐daily durations from the modelled daily precipitation, and, lastly, we analysed future projections at daily and sub‐daily scales. A frequency distribution was fitted to annual maxima time series for the sub‐daily durations to derive the DDF curves for 2 future time horizons and the 2 urban areas. The overall results showed a raising of the growth curves for the future horizons, indicating an increase in the intensity of extreme precipitation, especially for the shortest durations. The DDF curves highlight a general increase of extreme quantiles for the 2 urban areas, thus underlining the risk of failure of the existing urban drainage systems under more severe events.  相似文献   

14.
Assessing the probability of extreme precipitation events is consequential in civil planning. This requires an understanding of how return values change with return periods, which is essentially described by the generalized extreme value (GEV) shape parameter. Some works in the field suggest a constant shape parameter, while our analysis indicates a non-universal value. We re-analysed an older precipitation dataset (169 stations) extended by Norwegian data (71 stations). We showed that while each set seems to have a constant shape parameter, it differs between the two datasets, indicating regional differences. For a more comprehensive analysis of spatial effects, we examined a global dataset (1495 stations). We provided shape parameter maps for two models and found clear evidence that the shape parameter depends on elevation, while the effect of latitude remains uncertain. Our results confirm an explanation in terms of dominating precipitation systems based on a proxy derived from the Köppen-Geiger climate classification.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

15.
本文对黄土高原和天山黄土区表土进行系统的岩石磁学和粒度测试分析,探讨了表土磁性特征及其环境意义,结果表明表土中的强磁性矿物均为磁铁矿和磁赤铁矿,弱磁性矿物为赤铁矿和纤铁矿或针铁矿,黄土高原黄土地层中的磁赤铁矿至少有部分属于风积成因.黄土高原表土中磁化率与频率磁化率呈良好的正相关,气候作用是主导黄土高原表上磁化率增强的主...  相似文献   

16.
Based on data from 148 hydrometric stations in the Yellow River Basin, an analysis of regional scale relationship, or the relationship between specific sediment yield and drainage basin area, has been undertaken in the study area of the Loess Plateau. For different regions, scale relationship in log-log ordinate can be fitted by two types of lines: straight and parabola, and for each line, a function was fitted using regression analysis. The different scale relationships have been explained in terms of the difference in surface material distribution and landforms. To offset the scale-induced influence, calcu-lation has been done based on the fitted functions, in order to adjust the data of specific sediment yield to a common standard area. Based on the scaled data, a map of specific sediment yield was con-structed using Kriging interpolation. For comparison, a map based on the un-scaled data of specific sediment yield was also constructed using the same method. The two maps show that the basic pattern of specific sediment yield was basically the same. The severely eroded areas (Ys >10000 t km-2a-1) were at the same locations from Hekouzhen to Longmen in the middle Yellow River Basin. However, after the adjustment to a common standard area, the very severely eroded area (Ys >20000 t km-2a-1) became much enlarged because after the adjustment, all the values of Ys in the lower river basin in those regions became much larger than before.  相似文献   

17.
China's Loess Plateau was formed under special conditions. The tectonic movement, topographical characteristics, and monsoon patterns combined to create a favourable environment for the accumulation of thick loessic deposits. The Loess Plateau itself is part of the ‘Monsoon Triangle’ of China, a region very susceptible to climatic changes. Throughout the Upper Pleistocene the palaeoenvironment on the Loess Plateau alternated from steppe, to deciduous forest and coniferous forest, in response to shifts in the atmospheric circulation. Three monsoon patterns appear to be indicated: (1) a full glacial monsoon pattern (18000–15000 yr BP) which induced a cold and dry climate favouring loess accumulation in steppe conditions; (2) an interglacial monsoon pattern (last interglacial and Holocene) in which a warm humid climate prevailed with deciduous forests, leaving palaeosols interbedded within the loess sequence; and (3) a transitional or interstadial monsoon pattern (50 000–23 000 yr BP) in which the climate was cold and humid in the Loess Plateau, encouraging the development of coniferous forest.  相似文献   

18.
Abstract

The Loess Plateau in China is overlain by deep and loose soil. As in other semi-arid regions, convective precipitation produces storms, typically of short duration, relatively high intensity and limited areal extent. Infiltration excess (Hortonian mechanism) of precipitation is conventionally assumed to be more prominent than saturation excess (Dunne mechanism) for storm runoff generation. This assumption is true at a point during the storm. However, the runoff generation mechanism is altered when the runoff is conditioned by a lateral redistribution movement of water, i.e. run-on, as the spatial scale increases. In the Loess Plateau, the effects of run-on may be significant, because of the deep and loose surface soil layer. In this study, the role of run-on for overland flow in the Upper Wei River basin, located in the Loess Plateau, is evaluated by means of a simple numerical model at the hillslope scale. The results show that almost all the Hortonian overland flow infiltrates into the soil along the flat hillslope and dry gully before it reaches the river channel. Most of the runoff is generated from the saturated soil near the river channel and from the subsurface. The run-on process takes much longer than the infiltration, facilitating rainfall–runoff modelling at a daily time step. A hydrological model is employed to investigate the characteristics of runoff generation in the Upper Wei River basin. The analysis shows that the subsurface flow contribution to total streamflow is more than 53% from October to March, while the overland flow contribution exceeds 72% from April to September.

Editor D. Koutsoyiannis; Associate editor Dawen Yang

Citation Liu, D.F., Tian, F.Q., Hu, H.C., and Hu, H.P., 2012. The role of run-on for overland flow and the characteristics of runoff generation in the Loess Plateau, China. Hydrological Sciences Journal, 57 (6), 1107–1117.  相似文献   

19.
Using the automatic weather station data obtained from the Tibetan Plateau (TP), the normalized dif- ference vegetation index and the monthly precipitation data of China and by the methods of correlation and composite analysis, preliminary analytical results are achieved concerning the relationships be- tween TP NDVI change and its surface heat source and precipitation of China. The results of our re- search may lead to the following conclusions: (1) A positive correlation relationship exists between TP NDVI change and its surface heat source, including the sensible heat and the latent heat. As to the correlation of the former, it is more remarkable in western TP than in eastern TP, and as to the correla- tion of the latter, however it turns out contrary. (2) With the improvement of TP vegetation, its surface heat source of every season is also mainly reinforced, especially in summer. As to the contribution of the sensible heat and the latent heat to the increment of the TP surface heat source intensity, the for- mer is comparatively more significant than the latter in winter and spring, while in summer and autumn, the two have almost the same importance. (3) The correlation coefficient between summer NDVI over TP and the corresponding period precipitation of China displays a belt distribution of " ? " from south to north China. (4) Anomalous surface heating field over TP derived from vegetation change is probably an important factor to affect summer precipitation of China.  相似文献   

20.
Afforestation has been suggested as a means of improving soil and water conservation in north‐western China, especially on the Loess Plateau. Understanding of the hydrological responses to afforestation will help us develop sustainable watershed management strategies. A study was conducted during the period of 1956 to 1980 to evaluate runoff responses to afforestation in a watershed on the Loess Plateau with an area of 1·15 km2, using a paired watershed approach. Deciduous trees, including locust (locusta L.), apricot (praecox L.) and elm (ulmus L.), were planted on about 80% of a treated watershed, while a natural grassland watershed remained unchanged. It was estimated that cumulative runoff yield in the treated watershed was reduced by 32% as a result of afforestation. A significant trend was also observed that shows annual runoff reduction increases with the age of the trees planted. Reduction in monthly runoff occurred mainly from June to September, which was ascribed to greater rainfall and utilization by trees during this period. Afforestation also resulted in reduction in the volume and peak flow of storm runoff events in the treated watershed with greater reduction in peak flow. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号