首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The Middle East region, where arid and semi‐arid regions occupy most of the land, is extremely vulnerable to any natural or anthropogenic reductions in available water resources. Much of the observed interannual‐decadal variability in Middle Eastern streamflow is physically linked to a large‐scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). In this work, the relationship between the NAO index and the seasonal and annual streamflows in the west of Iran was statistically examined during the last four decades. The correlations were constructed for two scenarios (with and without time lag). The associations between the annual and seasonal streamflows and the simultaneous NAO index were found to be poor and insignificant. The possibility of streamflow forecasting was also explored, and the results of lag correlations revealed that streamflow responses at the NAO signal with two and three seasons delays. The highest Spearman correlation coefficient of 0.379 was found between the spring NAO index and the autumn streamflow series at Taghsimab station, indicating that roughly 14% of the variance in the streamflow series is associated with NAO forcing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Headwater streamflows in the Rocky Mountain foothills are the key to water availability in the Canadian Prairies. Headwater characteristics, however, have been and continue to be subject to major variability and change. Here, we identify various forms of change in the annual mean streamflow and timing of the annual peak and attempt to distinguish between the effects of multiple drivers using a generalized regression scheme. Our investigation shows that the Pacific Decadal Oscillation (PDO) is the main driver of significant monotonic trends and shifts in the central tendency of annual mean streamflow in major headwaters. In parallel, the cumulative effects of non‐PDO climatic drivers and human‐induced land use and land management are the main causes of significant variations in the timing of the annual peak. Additional analyses show that time sequences with significant trends in annual mean streamflow and timing of the annual peak coincide with those that show significant trends in the PDO or non‐PDO component of the air temperature, respectively. The natural streamflow characteristics are substantially perturbed by anthropogenic river flow regulation, depending on the form of change and/or the level of regulation. Evidence suggests that the general tendency of human regulation is to alleviate the severity of above‐ and below‐average streamflow conditions; however, it may also intensify the variability in natural streamflow characteristics during drier years and/or those with earlier annual peak timing. These are circumstances to which the regional water resource system is vulnerable. Our findings are important for the provision of effective regional water resource management in the Canadian Prairies and contribute to a better understanding of the complex interactions between natural and anthropogenic drivers in coupled human–water systems.  相似文献   

3.
Pinyon‐juniper (PJ) cover has increased up to 10‐fold in many parts of the western U.S. in the last 140+ years. The impacts of these changes on streamflows are unclear and may vary depending on the intra‐annual distribution and amount of precipitation. Given the importance of streamflow in the western U.S., it is important to understand how shifts in PJ woodland cover may produce changes in streamflow across the region's diverse hydroclimates. To this end, we simulated the land surface water balance with contrasting woodland and grassland cover with the Hydrologiska Byråns Vattenbalansavdelning (HBV) model at a 4‐km resolution across the distribution of PJ woodlands in the western U.S. We used shifts in evapotranspiration (ET) between woodland and grassland cover as a proxy for potential changes in streamflows. Comparison of HBV model results with paired catchment studies indicated the model reasonably simulated annual decreases in ET with changes from woodland to grassland cover. For the northern and western ecoregions of the PJ distribution in the western U.S. where precipitation predominantly occurs in the winter, HBV simulated a 25 mm (37%) annual decrease in ET with conversion to grassland from woodland. Conversely, in southern ecoregions of PJ distribution with prominent summer monsoons, annual differences in ET were only 6 mm (19%). Our results suggest that only 29% of the PJ distribution, compared to an estimated 45% based on precipitation amount alone, has the potential for meaningful increases in streamflow with land cover change from woodland to grassland.  相似文献   

4.
Tree‐ring‐based reconstructions of paleo‐hydrology have proved useful for better understanding the irregularities and extent of past climate changes, and therefore, for more effective water resources management. Despite considerable advances in the field, there still exist challenges that introduce significant uncertainties into paleo‐reconstructions. This study outlines these challenges and address them by developing two themes: (1) the effect of temporal scaling on the strength of the relationship between the hydrologic variables, streamflow in this study, and tree growth rates and (2) the reconstruction uncertainty of streamflow due to the dissimilarity or inconsistency in the pool of tree‐ring chronologies (predictors in reconstruction) in a basin. Based on the insight gained, a methodology is developed to move beyond only relying on the annual hydrology‐growth correlations, and to utilize additional information embedded in the annual time series at longer time scales (e.g. multi‐year to decadal time scales). This methodology also generates an ensemble of streamflow reconstructions to formally account for uncertainty in the pool of chronology sites. The major headwater tributaries of the Saskatchewan River Basin, the main source of surface water in the Canadian Prairie Provinces, are used as the case study. It is shown that the developed methodology explains the variance of streamflows to a larger extent than the conventional approach and better preserves the persistence and variability of streamflows across time scales (Hurst‐type behaviour). The resulting ensemble of paleo‐hydrologic time series is able to more credibly pinpoint the timing and extent of past dry and wet periods and provides a dynamic range of uncertainty in reconstruction. This range varies with time over the course of the reconstruction period, indicating that the utility of tree‐ring chronologies for paleo‐reconstruction differs for different time periods over the past several centuries in the history of the region. The proposed ensemble approach provides a credible range of multiple‐century‐long water availability scenarios that can be used for vulnerability assessment of the existing water infrastructure and improving water resources management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Recent hydro‐climatological trends and variability characteristics were investigated for the Lake Naivasha basin with the aim of understanding the changes in water balance components and their evolution over the past 50 years. Using a Bayesian change point analysis and modified Mann–Kendall tests, time series of annual mean, maximum, minimum, and seasonal precipitation and flow, as well as annual mean lake volumes, were analysed for the period 1960–2010 to uncover possible abrupt shifts and gradual trends. Double cumulative curve analysis was used to investigate the changes in hydrological response attributable to either human influence or climatic variability. The results indicate a significant decline in lake volumes at a mean rate of 9.35 × 106 m3 year?1. Most of the river gauging stations showed no evidence of trends in the annual mean and maximum flows as well as seasonal flows. Annual minimum flows, however, showed abrupt shifts and significant (upward/downward) trends at the main outlet stations. Precipitation in the basin showed no evidence of abrupt shifts, but a few stations showed gradual decline. The observed changes in precipitation could not explain the decline in both minimum flows and lake volumes. The findings show no evidence of any impact of climate change for the Lake Naivasha basin over the past 50 years. This implies that other factors, such as changes in land cover and infrastructure development, have been responsible for the observed changes in streamflow and lake volumes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The East River in the Pearl River basin, China, plays a vital role in the water supply for mega‐cities within and in the vicinity of the Pearl River Delta. Knowledge of statistical variability of streamflow is therefore important for water resources management in the basin. This study analyzed streamflow from four hydrological stations on the East River for a period of 1951–2009, using ensemble empirical mode decomposition (EEMD), continuous wavelet transform (CWT) technique, scanning t and F tests. Results indicated increasing/decreasing streamflow in the East River basin before/after the 1980s. After the early 1970s, the high/low flow components were decreasing/increasing. CWT‐based analysis demonstrates a significant impact of water reservoirs on the periodicity of streamflow. Scanning t and F test indicates that significantly abrupt changes in streamflow are largely influenced by both water reservoirs construction and precipitation changes. Thus, changes of streamflow, which are reflected by variations of trend, periodicity and abrupt change, are due to both water reservoir construction and precipitation changes. Further, the changes of volume of streamflow in the East River are in good agreement with precipitation changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The hydrologic impact of climate change has been largely assessed using mostly conceptual hydrologic models. This study investigates the use of distributed hydrologic model for the assessment of the climate change impact for the Spencer Creek watershed in Southern Ontario (Canada). A coupled MIKE SHE/MIKE 11 hydrologic model is developed to represent the complex hydrologic conditions in the Spencer Creek watershed, and later to simulate climate change impact using Canadian global climate model (CGCM 3·1) simulations. Owing to the coarse resolution of GCM data (daily GCM outputs), statistical downscaling techniques are used to generate higher resolution data (daily precipitation and temperature series). The modelling results show that the coupled model captured the snow storage well and also provided good simulation of evapotranspiration (ET) and groundwater recharge. The simulated streamflows are consistent with the observed flows at different sites within the catchment. Using a conservative climate change scenario, the downscaled GCM scenarios predicted an approximately 14–17% increase in the annual mean precipitation and 2–3 °C increase in annual mean maximum and minimum temperatures for the 2050s (i.e., 2046–2065). When the downscaled GCM scenarios were used in the coupled model, the model predicted a 1–5% annual decrease in snow storage for 2050s, approximately 1–10% increase in annual ET, and a 0·5–6% decrease in the annual groundwater recharge. These results are consistent with the downscaled temperature results. For future streamflows, the coupled model indicated an approximately 10–25% increase in annual streamflows for all sites, which is consistent with the predicted changes in precipitation. Overall, it is shown that distributed hydrologic modelling can provide useful information not only about future changes in streamflow but also changes in other key hydrologic processes such as snow storage, ET, and groundwater recharge, which can be particularly important depending on the climatic region of concern. The study results indicate that the coupled MIKE SHE/MIKE 11 hydrologic model could be a particularly useful tool for understanding the integrated effect of climate change in complex catchment scale hydrology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Over the last century, afforestation in Ireland has increased from 1% of the land area to 10%, with most plantations on upland drained blanket peatlands. This land use change is considered to have altered the hydrological response and water balance of upland catchments with implications for water resources. Because of the difficulty of observing these long‐term changes in the field, the aim of this study was to utilize a hydrological model to simulate the rainfall runoff processes of an existing pristine blanket peatland and then to simulate the hydrology of the peatland if it were drained and afforested. The hydrological rainfall runoff model (GEOtop) was calibrated and validated for an existing small (76 ha) pristine blanket peatland in the southwest of Ireland for the 2‐year period, 2007–2008. The current hydrological response of the pristine blanket peatland catchment with regard to streamflow and water table (WT) levels was captured well in the simulations. Two land use change scenarios of afforestation were also examined, (A) a young 10‐year‐old and (B) a semi‐mature 15‐year‐old Sitka Spruce forest. Scenario A produced similar streamflow dynamics to the pristine peatland, whereas total annual streamflow from Scenario B was 20% lower. For Scenarios A and B, on an annual average basis, the WT was drawn down by 16 and 20 cm below that observed in the pristine peatland, respectively. The maximum WT draw down in Scenario B was 61 cm and occurred in the summer months, resulting in a significant decrease in summer streamflow. Occasionally in the winter (following rainfall), the WT for Scenario B was just 2 cm lower than the pristine peatland, which when coupled with the drainage networks associated with afforestation led to higher peak streamflows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

The method of fragments is applied to the generation of synthetic monthly streamflow series using streamflow data from 34 gauging stations in mainland Portugal. A generation model based on the random sampling of the log-Pearson Type III distribution was applied to each sample to generate 1200 synthetic series of annual streamflow with an equal length to that of the sample. The synthetic annual streamflow series were then disaggregated into monthly streamflows using the method of fragments, by three approaches that differed in terms of the establishment of classes and the selection of fragments. The results of the application of such approaches were compared in terms of the capacity of the method to preserve the main monthly statistical parameters of the historical samples.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Silva, A.T. and Portela, M.M., 2012. Disaggregation modelling of monthly streamflows using a new approach of the method of fragments. Hydrological Sciences Journal, 57 (5), 942–955.  相似文献   

11.
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   

13.
断层等不连续性结构的检测在地震勘探中具有重要的意义.本文简单介绍了高维连续小波变换的基本理论,包括:高维连续小波变换的定义、高维小波变换系数的切片以及快速实现方法等,利用典型的合成信号说明了高维连续小波变换具有更好的方向选择性(相比于常用的高维张量积小波变换),将高维连续小波变换引入地震资料不连续性检测,并提出了利用小尺度高维连续小波变换系数检测地震资料不连续性的方法,同时给出了方法的实现流程.合成信号以及实际三维地震数据处理效果验证了本文所提方法的有效性.  相似文献   

14.
In most studies, trend detection is performed under the assumption of a monotonic trend. However, natural processes and, in particular, hydro‐climatic variables may not conform to this assumption. This study performs a simultaneous evaluation of gradual and abrupt changes in Canadian low streamflows using a modified Mann–Kendall (MK) trend test and a Bayesian multiple change‐point detection model. Statistical analysis, using the whole record of observation (under a monotonic trend assumption), shows that winter and summer low flows are dominated by upward and downward trends, respectively. Overall, about 20% of low flows are characterized by significant trends, where ~80% of detected significant trends are upward (downward) for winter (summer) season. Change‐point analysis shows that over 50% of low‐flow time series experienced at least one abrupt change in mean or in direction of trend, of which ~50% occurred in 1980s with a mode in 1987. Analysis of segmented time series based on a common change‐point date indicates a reduced number of significant trends, which is attributed to first, the change in nonstationarity behaviour of low flows leading to less trend‐type changes in the last few decades; and second, the false detection of trends when the sample data are characterized by shifts in mean. Depending on whether the monotonic trend assumption holds, the on‐site and regional interpretation of results may vary (e.g. winter low flow) or even lead to contradictory conclusions (e.g. summer low flow). Trend analysis of last two decades of streamflows shows that (1) winter low flows are increasing in eastern Canada and southern British Columbia, whereas they are decreasing in western Canada; (2) summer low flows are increasing in central Canada, southern British Columbia and Newfoundland, whereas they are decreasing in Yukon and northern British Columbia and also in eastern Ontario and Quebec. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A hybrid model that blends two non‐linear data‐driven models, i.e. an artificial neural network (ANN) and a moving block bootstrap (MBB), is proposed for modelling annual streamflows of rivers that exhibit complex dependence. In the proposed model, the annual streamflows are modelled initially using a radial basis function ANN model. The residuals extracted from the neural network model are resampled using the non‐parametric resampling technique MBB to obtain innovations, which are then added back to the ANN‐modelled flows to generate synthetic replicates. The model has been applied to three annual streamflow records with variable record length, selected from different geographic regions, namely Africa, USA and former USSR. The performance of the proposed ANN‐based non‐linear hybrid model has been compared with that of the linear parametric hybrid model. The results from the case studies indicate that the proposed ANN‐based hybrid model (ANNHM) is able to reproduce the skewness present in the streamflows better compared to the linear parametric‐based hybrid model (LPHM), owing to the effective capturing of the non‐linearities. Moreover, the ANNHM, being a completely data‐driven model, reproduces the features of the marginal distribution more closely than the LPHM, but offers less smoothing and no extrapolation value. It is observed that even though the preservation of the linear dependence structure by the ANNHM is inferior to the LPHM, the effective blending of the two non‐linear models helps the ANNHM to predict the drought and the storage characteristics efficiently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Wavelet analysis of rainfall variation in the Hebei Plain   总被引:5,自引:0,他引:5  
Rainfall is an important climate factor, which has significant impacts on agricultural production and na-tional economic development[1]. Being part of the North China Plain, the Hebei Plain is an agricultural region. Under the continental monsoon climate, it is cold and dry in winter, hot and rainy in summer, and its variable rainfall is concentrated in summer. Droughts and floods occur frequently and impose sig-nificant impacts on agricultural production. Studies on the characteristics and …  相似文献   

17.
Satellite‐based and reanalysis quantitative precipitation estimates are attractive for hydrologic prediction or forecasting and reliable water resources management, especially for ungauged regions. This study evaluates three widely used global high‐resolution precipitation products [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks‐Climate Data Record (PERSIANN‐CDR), Tropical Rainfall Measuring Mission 3B42 Version 7 (TRMM 3B42V7), and National Centers for Environment Prediction‐Climate Forecast System Reanalysis (NCEP‐CFSR)] against gauge observations with seven statistical indices over two humid regions in China. Furthermore, the study investigates whether the three precipitation products can be reliably utilized as inputs in Soil and Water Assessment Tool, a semi‐distributed hydrological model, to simulate streamflows. Results show that the precipitation estimates derived from TRMM 3B42V7 outperform the other two products with the smallest errors and bias, and highest correlation at monthly scale, which is followed by PERSIANN‐CDR and NCEP‐CFSR in this rank. However, the superiority of TRMM 3B42V7 in errors, bias, and correlations is not warranted at daily scale. PERSIANN‐CDR and 3B42V7 present encouraging potential for streamflow prediction at daily and monthly scale respectively over the two humid regions, whilst the performance of NCEP‐CFSR for hydrological applications varies from basin to basin. Simulations forced with 3B42V7 are the best among the three precipitation products in capturing daily measured streamflows, whilst PERSIANN‐CDR‐driven simulations underestimate high streamflows and high streamflow simulations driven by NCEP‐CFSR mostly are overestimated significantly. In terms of extreme events analysis, PERSIANN‐CDR often underestimates the extreme precipitation, so do extreme streamflow simulations forced with it. NCEP‐CFSR performs just the reverse, compared with PERSIANN‐CDR. The performance pattern of TRMM 3B42V7 on extremes is not certain, with coexisting underestimation and overestimation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
As an integrated result of many driving factors, significant declines in streamflow were observed in many rivers of the Loess Plateau (NW China). This can aggravate the inherent severe water shortages and threatens the regional development. Therefore, it is urgent to develop adaptive measures to regulate the water yield to ensure water security. A key step for successful implementation of such measures is to separate the response of water yield to the main driving factors of land management and climate change. In this study, the variation of annual streamflow, precipitation, potential evapotranspiration, and climatic water balance in a small catchment in the Loess Plateau (near Pingliang, Gansu province) was examined for over five decades, although the relative contribution of changes in land management and climate on the streamflow reduction were estimated. A statistically significant decreasing trend of ‐1.14 mm y‐1 in annual streamflow was detected. Furthermore, an abrupt streamflow reduction because of construction of terraces and check‐dams was identified around 1980. Remarkably, 74% of the total reduction in mean annual streamflow can be attributed to the soil conservation measures. Based on a literature review across the Loess Plateau, we found that the impact of changes in land management and climate on annual streamflow diminished with increasing catchment size. This means that there is a dependency on catchment size for the hydrological response to environmental change. This indicates that at least at the local scale well‐considered land management may help ensure the water security at the Loess Plateau. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Freezing characteristics were investigated for a sedge covered floating fen and spruce covered swamp located beside a shallow lake in the Western Boreal Forest of Canada. Thermal properties were measured in situ for one freeze‐thaw cycle, and for two freeze‐thaw cycles in laboratory columns. Thermal conductivity and liquid water content were related to a range of subsurface temperatures above and below the freezing thresholds, and clearly illustrate hysteresis between the freezing and thawing process. Thermal hysteresis occurs because of the large change in thermal conductivity between water and ice, high water content of the peat, and wide variation in pore sizes that govern ice formation. Field and laboratory results were combined to develop linear freezing functions, which were tested in a heat transfer model. For surface temperature boundary conditions, subsurface temperatures were simulated for the over‐winter period and compared with field measurements. Replication of the transient subsurface thermal regime required that freezing functions transition gradually from thawed to frozen state (spanning the ?0·25 to ?2 °C range) as opposed to a more abrupt step function. Subsurface temperatures indicate that the floating fen underwent complete phase change (from water to ice) and froze to approximately the same depth as lake ice thickness. Therefore, the floating fen peatland froze as a ‘shelf’ adjacent to the lake, whereas the spruce covered swamp had a higher capacity for thermal buffering, and subsurface freezing was both more gradual and limited in depth. These thermal properties, and the timing and duration of frozen state, are expected to control the interaction of water and nutrients between surface water and groundwater, which will be affected by changes in air temperature associated with global climate change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
We used a conceptual modelling approach on two western Canadian mountainous catchments that were burned in separate wildfires in 2003 to explore the potential of using modelling approaches to generalize post‐wildfire catchment hydrology in cases where pre‐wildfire hydrologic data were present or absent. The Fishtrap Creek case study (McLure fire, British Columbia) had a single gauged catchment with both pre‐fire and post‐fire data, whereas the Lost Creek case study (Lost Ck. fire, Alberta) had several instrumented burned and reference catchments providing streamflows and climate data only for the post‐wildfire period. Wildfire impacts on catchment hydrology were assessed by comparing pre‐wildfire and post‐wildfire model calibrated parameter sets for Fishtrap Creek (Fishtrap Ck.) and the calibrated parameters of two burned (South York Ck. and Lynx Ck.) and two unburned (Star Ck. and North York Ck.) catchments for Lost Ck. Model predicted streamflows for burned catchments were compared with unburned catchments (pre‐fire in the case of Fishtrap Ck. and unburned in the case of the Lost Ck.). Similarly, model predicted streamflows from unburned catchments were compared with burned catchments (post‐fire in the case of Fishtrap Ck. and burned in the case of the Lost Ck.). For Fishtrap Ck., different model parameters and streamflow behaviour were observed for pre‐wildfire and post‐wildfire conditions. However, the burned and unburned model results from the Lost Ck. wildfire did not show differing streamflow responses to the wildfire. We found that this hydrological modelling approach is suitable where pre‐wildfire and post‐wildfire data are available but may provide limited additional insights where pre‐disturbance hydrologic data are unavailable. This may in part be because the conceptual modelling approach does not represent the physical catchment processes, whereas a physically based model may still provide insights into catchment hydrological response in these situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号