首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Announcements     
ABSTRACT

Global climate variations are expected to cause serious challenges to water resources planning and management, including an increase in sea level, abrupt changes in rainfall patterns and changes in ecosystems. This study evaluates impacts of mid-century climate variability as projected by climate models in the Haw River watershed, which contributes significantly to Jordan Lake, a major source of drinking water supply in central North Carolina, USA. The watershed-based hydrological model, Soil and Water Assessment Tool (SWAT), was successfully calibrated with very good to excellent performance. Projected precipitation and temperature information for 2040–2069 from four dynamically downscaled regional climate models (RCMs) was used to force the SWAT modeling set-up of the watershed. On a long-term basis, a 38% decrease in the precipitation in early fall is expected while spring months are expected to receive 30% higher precipitation compared to the baseline condition (1980–2009). Water yield was found to increase in spring months, with a maximum of 74% increase on average. Summer months are expected to have on average 8% higher evapotranspiration (ET) than the baseline. Analysis of the change in average monthly streamflow at the watershed outlet (which leads to Lake Jordan) shows that there might be, on average, an 80% increase in streamflow in spring months (February, March, April and May), with the greatest increase (107%) in May. In general, simulation results indicated that the hydrological response of the watershed is very sensitive to the potential variation in climate (precipitation and temperature), with precipitation being one of the decisive factors in water yield increase.
Editor Z.W. Kundzewicz Associate editor N. Verhoest  相似文献   

2.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
河道型水库水动力特征与气候条件的响应关系   总被引:2,自引:1,他引:1  
气候条件(降雨、气温)的变化对流域内水资源、河道、湖库的径流影响较大.河道型水库由于具有河道和湖泊的双重特点,受气候条件的影响则更为显著.本文以广东省梅州的河道型水库——长潭水库为例,耦合流域分布式水文模型SWAT与环境流体动力学模型EFDC,研究了河道型水库水动力特征(以水龄表征)与气候条件的响应关系.根据梅县气象站1953-2010年共58年的年均降雨量资料的频率分析,选取降雨量保证率分别为20%(丰水年)、50%(平水年)和90%(枯水年)年份的气候条件作为3种气候方案,对应的典型年分别为1992、1988和2004年,并将各典型年的日均降雨量和气温作为SWAT水文模型的输入条件,模拟了进入长潭水库各主要支流的日均变化过程.并将该流量过程作为长潭水库库区水动力模型的入流边界,模拟了各种降雨典型年情景下长潭水库的水动力变化过程.结果表明,长潭水库库区水龄沿程逐渐增大,呈指数增长的趋势,且受气候条件的影响很大.与丰水年相比,平水年、枯水年年降雨量分别减少了14%和49%,入库径流分别减少了23%和62%,水库出库坝址附近水龄分别增大了66%和247%,支流区域水龄增幅可达81%和290%左右,可见水库水动力特征受气候条件影响很大,而支流区域受气候条件影响更显著.不同气候条件下,河道型水库分别呈现出河道和深水湖泊的双重特性.丰水年时,坝址附近垂向上水体交换频繁,水龄均匀,呈现出河道的特性;平水年与枯水年时,坝址附近水体垂向交换较弱,逐渐呈现出深水湖泊的垂向分层特性.另外,流域分布式水文模型SWAT与环境流体动力学模型EFDC的联用,为弥补历史长系列高频监测资料的缺失,提高湖库水动力模型模拟的精度提供了有效的方法.  相似文献   

5.
The effects of variability in climate and watershed (groundwater withdrawal and land use) on dry‐weather streamflows were investigated using SWAT (Soil and Water Assessment Tool). The equation to predict the total runoff (TR) using climate data was derived from simulation results for 30 years by multiple regression analysis. These may be used to estimate effects of various climate variations (precipitation during the dry period, precipitation during the previous wet period, solar radiation, and maximum temperature). For example, if daily average maximum temperature increases by 3 °C, TR during the dry period will decrease by 27·9%. Similarly, groundwater withdrawals strongly affect streamflow during the dry period. However, land use changes (increasing urbanization) within the forested watershed do not appear to significantly affect TR during the dry period. Finally, a combined equation was derived that describes the relationships between the TR during the dry period and the climate, groundwater withdrawal and urban area proportion in a small monsoon watershed. This equation will be effective to predict the water availability during the dry periods in the future since it is closely related to changes of temperature, precipitation, solar radiation, urban area ratio, and groundwater withdrawal quantity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In temperate humid catchments, evapotranspiration returns more than half of the annual precipitation to the atmosphere, thereby determining the balance available to recharge groundwaters and support stream flow and lake levels. Changes in evapotranspiration rates and, therefore, catchment hydrology could be driven by changes in land use or climate. Here, we examine the catchment water balance over the past 50 years for a catchment in southwest Michigan covered by cropland, grassland, forest, and wetlands. Over the study period, about 27% of the catchment has been abandoned from row‐crop agriculture to perennial vegetation and about 20% of the catchment has reverted to deciduous forest, and the climate has warmed by 1.14 °C. Despite these changes in land use, the precipitation and stream discharge, and by inference catchment‐scale evapotranspiration, have been stable over the study period. The remarkably stable rates of evapotranspirative water loss from the catchment across a period of significant land cover change suggest that rainfed annual crops and perennial vegetation do not differ greatly in evapotranspiration rates, and this is supported by measurements of evapotranspiration from various vegetation types based on soil water monitoring in the same catchment. Compensating changes in the other meteorological drivers of evaporative water demand besides air temperature—wind speed, atmospheric humidity, and net radiation—are also possible but cannot be evaluated due to insufficient local data across the 50‐year period. Regardless of the explanation, this study shows that the water balance of this landscape has been resilient in the face of both land cover and climate change over the past 50 years.  相似文献   

7.
Climate and land use changes greatly modify hydrologic regimes. In this paper, we modelled the impacts of biofuel cultivation in the US Great Plains on a 1061‐km2 watershed using the Soil and Water Assessment Tool (SWAT) hydrologic model. The model was calibrated to monthly discharges spanning 2002–2010 and for the winter, spring, and summer seasons. SWAT was then run for a climate‐change‐only scenario using downscaled precipitation and a projected temperature for 16 general circulation model (GCM) runs associated with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 scenario spanning 2040–2050. SWAT was also run on a climate change plus land use change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native range grasses, winter wheat, and rye (89% of the basin). For the climate‐change‐only scenario, the GCMs agreed on a monthly temperature increase of 1–2 °C by the 2042–2050 period, but they disagreed on the direction of change in precipitation. For this scenario, decreases in surface runoff during all three seasons and increases in spring and summer evapotranspiration (eT) were driven predominantly by precipitation. Increased summer temperatures also significantly contributed to changes in eT. With the addition of switchgrass, changes in surface runoff are amplified during the winter and summer, and changes in eT are amplified during all three seasons. Depending on the GCM utilized, either climate change or land use change (switchgrass cultivation) was the dominant driver of change in surface runoff while switchgrass cultivation was the major driver of changes in eT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Bracketing the uncertainty of streamflow and agricultural runoff under climate change is critical for proper future water resource management in agricultural watersheds. This study used the Soil and Water Assessment Tool (SWAT) in conjunction with a Latin hypercube climate change sampling algorithm to construct a 95% confidence interval (95CI) around streamflow, sediment load, and nitrate load predictions under changes in climate for the Sacramento and San Joaquin River watersheds in California's Central Valley. The Latin hypercube algorithm sampled 2000 combinations of precipitation and temperature changes based on Intergovernmental Panel on Climate Change projections from multiple General Circulation Models. Average monthly percent changes of the upper and lower 95CI limits compared to the present‐day simulation and a statistic termed the “r‐factor” (average width of the 95CI band divided by the standard deviation of the 95CI bandwidth) were used to assess watershed sensitivities. 95CI results indicate that streamflow and sediment runoff in the Sacramento River watershed are more likely to decrease under climate change compared to present‐day conditions, whereas the increase and decrease for nitrate runoff were found to be equal. For the San Joaquin River watershed, streamflow slightly decreased under climate change, whereas sediment and nitrate runoff increased compared to present‐day climate. Comparisons of watershed sensitivities indicate that the San Joaquin River watershed is more sensitive to climate changes than the Sacramento River watershed, which is largely caused by the high density of agricultural land. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Located in the northeast of the Tibetan Plateau, the headwaters of the Yellow River basin (HYRB) are very vulnerable to climate change. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the impact of future climate change on this region's hydrological components for the near future period of 2013–2042 under three emission scenarios A1B, A2 and B1. The uncertainty in this evaluation was considered by employing Bayesian model averaging approach on global climate model (GCM) multimodel ensemble projections. First, we evaluated the capability of the SWAT model for streamflow simulation in this basin. Second, the GCMs' monthly ensemble projections were downscaled to daily climate data using the bias‐correction and spatial‐disaggregation method and then were utilized as input into the SWAT model. The results indicate the following: (1) The SWAT model exhibits a good performance for both calibration and validation periods after adjusting parameters in snowmelt module and establishing elevation bands in sub‐basins. (2) The projected precipitation suggests a general increase under all three scenarios, with a larger extent in both A1B and B1 and a slight variation for A2. With regard to temperature, all scenarios show pronounced warming trends, of which A2 displays the largest amplitude. (3) In the terms of total runoff from the whole basin, there is an increasing trend in the future streamflow at Tangnaihai gauge under A1B and B1, while the A2 scenario is characterized by a declining trend. Spatially, A1B and B1 scenarios demonstrate increasing trends across most of the region. Groundwater and surface runoffs indicate similar trends with total runoff, whereas all three scenarios exhibit an increase in actual evapotranspiration. Generally, both A1B and B1 scenarios suggest a warmer and wetter tendency over the HYRB in the forthcoming decades, while the case for A2 indicates a warmer and drier trend. Findings from this study can provide beneficial reference to water resource and eco‐environment management strategies for governmental policymakers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Land‐use change is one of the main drivers of watershed hydrology change. The effect of forestry related land‐use changes (e.g. afforestation, deforestation, agroforestry) on water fluxes depends on climate, watershed characteristics and spatial scale. The Soil and Water Assessment Tool (SWAT) model was calibrated, validated and used to simulate the impact of agroforestry on the water balance in the Mara River Basin (MRB) in East Africa. Model performance was assessed by Nash–Sutcliffe Efficiency (NSE) and Kling–Gupta Efficiency (KGE). The NSE (and KGE) values for calibration and validation were: 0.77 (0.88) and 0.74 (0.85) for the Nyangores sub‐watershed, and 0.78 (0.89) and 0.79 (0.63) for the entire MRB. It was found that agroforestry in the watershed would generally reduce surface runoff, mainly because of enhanced infiltration. However, it would also increase evapotranspiration and consequently reduce baseflow and overall water yield, which was attributed to increased water use by trees. Spatial scale was found to have a significant effect on water balance; the impact of agroforestry was higher at the smaller headwater catchment (Nyangores) than for the larger watershed (entire MRB). However, the rate of change in water yield with an increase in area under agroforestry was different for the two and could be attributed to the spatial variability of climate within the MRB. Our results suggest that direct extrapolation of the findings from a small sub‐catchment to a larger watershed may not always be accurate. These findings could guide watershed managers on the level of trade‐offs that might occur between reduced water yields and other benefits (e.g. soil erosion control, improved soil productivity) offered by agroforestry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Watershed scale hydrological and biogeochemical models rely on the correct spatial‐temporal prediction of processes governing water and contaminant movement. The Soil and Water Assessment Tool (SWAT) model, one of the most commonly used watershed scale models, uses the popular curve number (CN) method to determine the respective amounts of infiltration and surface runoff. Although appropriate for flood forecasting in temperate climates, the CN method has been shown to be less than ideal in many situations (e.g. monsoonal climates and areas dominated by variable source area hydrology). The CN model is based on the assumption that there is a unique relationship between the average moisture content and the CN for all hydrologic response units (HRUs), and that the moisture content distribution is similar for each runoff event, which is not the case in many regions. Presented here is a physically based water balance that was coded in the SWAT model to replace the CN method of runoff generation. To compare this new water balance SWAT (SWAT‐WB) to the original CN‐based SWAT (SWAT‐CN), two watersheds were initialized; one in the headwaters of the Blue Nile in Ethiopia and one in the Catskill Mountains of New York. In the Ethiopian watershed, streamflow predictions were better using SWAT‐WB than SWAT‐CN [Nash–Sutcliffe efficiencies (NSE) of 0·79 and 0·67, respectively]. In the temperate Catskills, SWAT‐WB and SWAT‐CN predictions were approximately equivalent (NSE > 0·70). The spatial distribution of runoff‐generating areas differed greatly between the two models, with SWAT‐WB reflecting the topographical controls imposed on the model. Results show that a water balance provides results equal to or better than the CN, but with a more physically based approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Integrated river basin models should provide a spatially distributed representation of basin hydrology and transport processes to allow for spatially implementing specific management and conservation measures. To accomplish this, the Soil and Water Assessment Tool (SWAT) was modified by integrating a landscape routing model to simulate water flow across discretized routing units. This paper presents a grid‐based version of the SWAT landscape model that has been developed to enhance the spatial representation of hydrology and transport processes. The modified model uses a new flow separation index that considers topographic features and soil properties to capture channel and landscape flow processes related to specific landscape positions. The resulting model is spatially fully distributed and includes surface, lateral and groundwater fluxes in each grid cell of the watershed. Furthermore, it more closely represents the spatially heterogeneous distributed flow and transport processes in a watershed. The model was calibrated and validated for the Little River Watershed (LRW) near Tifton, Georgia (USA). Water balance simulations as well as the spatial distribution of surface runoff, subsurface flow and evapotranspiration are examined. Model results indicate that groundwater flow is the dominant landscape process in the LRW. Results are promising, and satisfactory output was obtained with the presented grid‐based SWAT landscape model. Nash–Sutcliffe model efficiencies for daily stream flow were 0.59 and 0.63 for calibration and validation periods, and the model reasonably simulates the impact of the landscape position on surface runoff, subsurface flow and evapotranspiration. Additional revision of the model will likely be necessary to adequately represent temporal variations of transport and flow processes in a watershed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

14.
Abandoned underground mines (AUM) have caused dramatic environmental effects that are closely linked to regional sustainability. This paper explores the potential hydrological impact of AUM in the Monday Creek Watershed, a typically mined area in Appalachian region, using the Soil and Water Assessment Tool (SWAT 2005) model and Sequential Uncertainty Fitting (SUFI‐2), calibrated at both the global and local scales. The locally calibrated model better incorporates those key parameters relevant to AUM for specific sub‐basins and hydrologic response units. Data from the years 2003–2004 were used for calibration and 2005–2006 for validation. The results were quite satisfactory; both the coefficient of determination (R2) and the Nash–Sutcliffe efficiency statistic were over 0.80. The potential influences of AUM were assessed by modelling an alternative scenario assuming no AUM for the period 2003–2009. Results show that the hydrological process of lateral subsurface flow plays a dominant role in linking AUM to overall watershed hydrology. The potential hydrological impact of AUM is an increased annual lateral flow of 82.1%, and a decrease in annual surface flow by 15%, leading to an increase of 16.9% in annual water yield for the Monday Creek Watershed. The seasonal fluctuation of water yield has a similar trend to lateral flow, decreasing from March to August and increasing from August to January. Higher volume, higher flow peaks and higher recession constants characterized the hydrograph of daily streamflow from AUM. The results indicate that more emphasis should be put on lateral flow for further study of acid mine drainage and flooding control in those watersheds with AUM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
《国际泥沙研究》2016,(4):386-394
Identification of areas contributing disproportionately high amount of pollutants (i.e., critical source areas (CSAs)) to streams is important to efficiently and effectively target best management practices (BMPs). Process-based models are commonly used to identify CSAs and evaluate the impact of alternative management practices on pollutant load reductions. The objective of this study was to use the Soil and Watershed Assessment Tool (SWAT) to identify CSAs at the subwatershed level and evaluate the impact of alternative BMPs on sediment and total phosphorus (TP) load reductions in the Pleasant Valley watershed (50 km2) in South Central Wisconsin (USA). The Nash-Sutcliffe efficiency, percent bias, and coefficient of determination ranged from 0.58 to 0.71, ? 12.87 to 38.33, and 0.67 to 0.79, respectively, indicating that SWAT was able to predict stream flow, sediment and TP loadings at a monthly time-step with sufficient accuracy. Based on the SWAT simulation results, annual average (2006–2012) sub-watershed yield for sediment and TP ranged from 0.06 to 3.14 tons ha?1 yr?1 and 0.04 to 1.9 kg ha ? 1 yr ? 1, respectively. The croplands were the major source of sediment and TP in this watershed ( Z 84%). Reduction in sediment and TP loading ranged from 66%to 99%at the subwatershed level after conversion of croplands to Conservation Reserve Program (CRP) grasslands in subwatersheds identified as CSAs. On the other hand, reduction in sediment and TP loading with implementation of no-till practices ranged from only 14%to 25%. At the watershed outlet, sediment and TP loading reduction was r 15% after conversion of croplands to CRP grasslands and implementation of no-till practices because only about 8%of the watershed area was targeted for BMPs and/or resuspension of sediment deposited on the stream bed masked the downstream improvements in water quality.  相似文献   

16.
The hydrologic impact of climate change has been largely assessed using mostly conceptual hydrologic models. This study investigates the use of distributed hydrologic model for the assessment of the climate change impact for the Spencer Creek watershed in Southern Ontario (Canada). A coupled MIKE SHE/MIKE 11 hydrologic model is developed to represent the complex hydrologic conditions in the Spencer Creek watershed, and later to simulate climate change impact using Canadian global climate model (CGCM 3·1) simulations. Owing to the coarse resolution of GCM data (daily GCM outputs), statistical downscaling techniques are used to generate higher resolution data (daily precipitation and temperature series). The modelling results show that the coupled model captured the snow storage well and also provided good simulation of evapotranspiration (ET) and groundwater recharge. The simulated streamflows are consistent with the observed flows at different sites within the catchment. Using a conservative climate change scenario, the downscaled GCM scenarios predicted an approximately 14–17% increase in the annual mean precipitation and 2–3 °C increase in annual mean maximum and minimum temperatures for the 2050s (i.e., 2046–2065). When the downscaled GCM scenarios were used in the coupled model, the model predicted a 1–5% annual decrease in snow storage for 2050s, approximately 1–10% increase in annual ET, and a 0·5–6% decrease in the annual groundwater recharge. These results are consistent with the downscaled temperature results. For future streamflows, the coupled model indicated an approximately 10–25% increase in annual streamflows for all sites, which is consistent with the predicted changes in precipitation. Overall, it is shown that distributed hydrologic modelling can provide useful information not only about future changes in streamflow but also changes in other key hydrologic processes such as snow storage, ET, and groundwater recharge, which can be particularly important depending on the climatic region of concern. The study results indicate that the coupled MIKE SHE/MIKE 11 hydrologic model could be a particularly useful tool for understanding the integrated effect of climate change in complex catchment scale hydrology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Modelling blue and green water resources availability in Iran   总被引:7,自引:0,他引:7  
Knowledge of the internal renewable water resources of a country is strategic information which is needed for long‐term planning of a nation's water and food security, among many other needs. New modelling tools allow this quantification with high spatial and temporal resolution. In this study we used the program Soil and Water Assessment Tool (SWAT) in combination with the Sequential Uncertainty Fitting program (SUFI‐2) to calibrate and validate a hydrologic model of Iran based on river discharges and wheat yield, taking into consideration dam operations and irrigation practices. Uncertainty analyses were also performed to assess the model performance. The results were quite satisfactory for most of the rivers across the country. We quantified all components of the water balance including blue water flow (water yield plus deep aquifer recharge), green water flow (actual and potential evapotranspiration) and green water storage (soil moisture) at sub‐basin level with monthly time‐steps. The spatially aggregated water resources and simulated yield compared well with the existing data. The study period was 1990–2002 for calibration and 1980–1989 for validation. The results show that irrigation practices have a significant impact on the water balances of the provinces with irrigated agriculture. Concerning the staple food crop in the country, 55% of irrigated wheat and 57% of rain‐fed wheat are produced every year in water‐scarce regions. The vulnerable situation of water resources availability has serious implications for the country's food security, and the looming impact of climate change could only worsen the situation. This study provides a strong basis for further studies concerning the water and food security and the water resources management strategies in the country and a unified approach for the analysis of blue and green water in other arid and semi‐arid countries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Determining the groundwater contribution of nonpoint source pollution at a watershed scale is a challenging issue. In this study, we utilized a top‐down approach to characterize representative groundwater response units (GRUs) based on land use and landscape position (e.g., upland, sideslope, or floodplain) in the 275‐km2 Clear Creek Watershed, Iowa. Groundwater monitoring wells were then established along downslope transects in representative GRUs. This unique combination of top‐down/bottom‐up approaches allowed us to estimate groundwater pollutant loads at the watershed scale with minimal monitoring. For the 2015 study period, results indicated that more groundwater recharge occurred in the floodplain (404 mm) compared to the uplands or sideslopes (281 and 165 mm, respectively), irrespective of land use. Recharge in the floodplains consisted of 37% of the annual precipitation, whereas upland wells averaged 26% and sideslopes averaged 15% of the annual precipitation. Less recharge was found to occur beneath perennial grass compared to row crop and urbanized areas. Baseflow discharge accounted for 69% of the total NO3‐N exported from the Clear Creek Watershed, with row crop areas contributing approximately 95% of the annual load. Orthophosphorus (OP) yields were approximately 0.72 kg/ha beneath urban and suburban areas, three times higher than those in row crop or perennial areas. Urban and suburban areas accounted for 21.4% of groundwater orthophosphorus and chloride loads in the watershed compared to only 8.5% of the land area. Overall, the groundwater load allocation model for baseflow nutrient discharge to Clear Creek can be used to target future nonpoint source load reduction strategies at the watershed scale. The use of GRUs can pinpoint better areas of concern for controlling nutrient loads.  相似文献   

19.
A Note has been published for this article in Hydrological Processes 18(4) 2004, 825. Both water and heat balances were studied in a conifer plantation watershed in south‐west Japan, within the warm‐temperate East Asia monsoon area. Forest cover in the watershed consists mainly of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) plantations. Precipitation and runoff have been observed since 1991, so evapotranspiration can be compared with the water balance. Two meteorological observation towers were built to monitor evapotranspiration in the watershed. The annual average precipitation, amount of runoff and losses were 2166, 1243 and 923 mm, respectively. The evapotranspiration (latent heat flux) agreed well with the water balance losses. The average annual evapotranspiration at the tower built in the centre of the watershed was 902 mm; evapotranspiration at the other tower, further upslope, was 875 mm. The observed evapotranspiration was 39% to 40% of the average precipitation (2166 mm). The mean net radiation was c. 2·6 GJ m?2 year?1, and is considered a representative value of the net radiation (Rn) in coniferous plantations in this region. This region is classified in the humid zone based on the ratio of net radiation (Rn) to the energy required to evaporate the rainfall (λR). The mean annual evaporation of canopy‐intercepted water was 356 mm or about 15% of the average precipitation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Glacial retreat and the thawing of permafrost due to climate warming have altered the hydrological cycle in cryospheric‐dominated watersheds. In this study, we analysed the impacts of climate change on the water budget for the upstream of the Shule River Basin on the northeast Tibetan Plateau. The results showed that temperature and precipitation increased significantly during 1957–2010 in the study area. The hydrological cycle in the study area has intensified and accelerated under recent climate change. The average increasing rate of discharge in the upstream of the Shule River Basin was 7.9 × 106 m3/year during 1957–2010. As the mean annual glacier mass balance lost ?62.4 mm/year, the impact of glacier discharge on river flow has increased, especially after the 2000s. The contribution of glacier melt to discharge was approximately 187.99 × 108 m3 or 33.4% of the total discharge over the study period. The results suggested that the impact of warming overcome the effect of precipitation increase on run‐off increase during the study period. The evapotranspiration (ET) increased during 1957–2010 with a rate of 13.4 mm/10 years. On the basis of water balance and the Gravity Recovery and Climate Experiment and the Global Land Data Assimilation System data, the total water storage change showed a decreasing trend, whereas groundwater increased dramatically after 2006. As permafrost has degraded under climate warming, surface water can infiltrate deep into the ground, thus changing both the watershed storage and the mechanisms of discharge generation. Both the change in terrestrial water storage and changes in groundwater have had a strong control on surface discharge in the upstream of the Shule River Basin. Future trends in run‐off are forecasted based on climate scenarios. It is suggested that the impact of warming will overcome the effect of precipitation increase on run‐off in the study area. Further studies such as this will improve understanding of water balance in cold high‐elevation regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号