首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Many investigations show relationships between topographical factors and the spatial distribution of soil moisture in catchments. However, few quantitative analyses have been carried out to elucidate the role of different hydrological processes in the spatial distribution of topsoil moisture in catchments. A spatially distributed rainfall—runoff model was used to investigate contributions of subsurface matric flow, macropore flow and surface runoff to the spatial distribution of soil moisture in a cultivated catchment. The model results show that lateral subsurface flow in the soil matrix or in macropores has a minor effect on the spatial distribution of soil moisture. Only when a perched groundwater table is maintained long enough, which is only possible if the subsurface is completely impermeable, may a spatial distribution in moisture content occur along the slope. Surface runoff, producing accumulations of soil moisture in flat flow paths of agricultural origin (field boundaries), was demonstrated to cause significant spatial variations in soil moisture within a short period after rainfall (<2 days). When significant amounts of surface runoff are produced, wetter moisture conditions will be generated at locations with larger upstream contributing areas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This research develops a one-parameter model of saturated source area dynamics and the spatial distribution of soil moisture. The single required parameter is the maximum soil moisture deficit within the catchment. The concept behind the development of the model comes from the fact that the complexity of topographically-driven runoff generation can be reduced through the use of geomorphological scaling relations. The scaling formulation allows the prediction of the dynamics of saturated source areas as a function of basin-wide soil moisture state. This model offers a number of potential advantages. Firstly, the model parameter is independent of topographic index distribution and its associated scale effects. Secondly, it may be possible to measure this single parameter using field measurements or perhaps remote sensing, which gives the model significant potential for application in ungauged basins. Finally, the fact that this parameter is a physical characteristic of the basin, estimation of this parameter avoids regionalization and parameter transferability problems. The model is tested using rainfall–runoff data from the 10.4 ha experimental catchment known as Tarrawara in Australia, the 37 km2 Town Creek catchment in U.S.A., and the 620 km2 Balaphi and the 850 km2 Likhu sub-catchments of the Koshi river in Nepal. In sub-catchments of Koshi river, the simulation results compare favorably against the calibrated TOPMODEL both in terms of direct runoff and the spatial distribution of soil moisture state. In the Tarrawara and Town Brook catchments, simulation results compare favorably against observed storm runoff using all observed data, without calibration.  相似文献   

4.
This article describes and formulates a model designed to simulate runoff in wet weather events, called reservoir rainfall–runoff geomorphological model (R3GeM). In these wetlands, soil saturation is the main mechanism for the generation of surface runoff. To determine the saturated areas, the model applies a relationship based on the topographic index, between watershed storage and saturated surface. Precipitation is separated into surface runoff by saturation, subsurface runoff and losses; then, the flow of surface and subsurface runoff is performed. This hydrological model has five parameters and has been implemented in 37 events in Aixola watershed and 15 in Oiartzun watershed, both located on the Cantabrian coast of Spain. We analysed the influence of these five parameters in their behaviour, and we have proven, noting the efficiency gains, that the proposed model is valid to simulate the rainfall–runoff process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Understanding of rainfall–runoff model performance under non-stationary hydroclimatic conditions is limited. This study compared lumped (IHACRES), semi-distributed (HEC-HMS) and fully-distributed (SWATgrid) hydrological models to determine which most realistically simulates runoff in catchments where non-stationarity in rainfall–runoff relationships exists. The models were calibrated and validated under different hydroclimatic conditions (Average, Wet and Dry) for two heterogeneous catchments in southeast Australia (SEA). SWATgrid realistically simulates runoff in the smaller catchment under most hydroclimatic conditions but fails when the model is calibrated in Dry conditions and validated in Wet. All three models perform poorly in the larger catchment irrespective of hydroclimatic conditions. This highlights the need for more research aimed at improving the ability of hydrological models to realistically incorporate the physical processes causing non-stationarity in rainfall–runoff relationships. Although the study is focussed on SEA, the insights gained are useful for all regions which experience large hydroclimatic variability and multi-year/decadal droughts.  相似文献   

6.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

7.
Soil heterogeneity plays an important role in determining surface runoff generation mechanisms. At the spatial scales represented by land surface models used in regional climate model and/or global general circulation models (GCMs) for numerical weather prediction and climate studies, both infiltration excess (Horton) and saturation excess (Dunne) runoff may be present within a studied area or a model grid cell. Proper modeling of surface runoff is essential to a reasonable representation of feedbacks in the land–atmosphere system. In this paper, a new surface runoff parameterization that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell is presented. The new parameterization takes into account of effects of soil heterogeneity on Horton and Dunne runoff. A series of numerical experiments are conducted to study the effects of soil heterogeneity on Horton and Dunne runoff and on soil moisture storage under different soil and precipitation conditions. The new parameterization is implemented into the current version of the hydrologically based variable infiltration capacity (VIC) land surface model and tested over three watersheds in Pennsylvania. Results show that the new parameterization plays a very important role in partitioning the water budget between surface runoff and soil moisture in the atmosphere–land coupling system. Significant underestimation of the surface runoff and overestimation of subsurface runoff and soil moisture could be resulted if the Horton runoff mechanism were not taken into account. Also, the results show that the Horton runoff mechanism should be considered within the context of subgrid-scale spatial variability of soil properties and precipitation. An assumption of time-invariant spatial distribution of potential infiltration rate may result in large errors in surface runoff and soil moisture. In addition, the total surface runoff from the new parameterization is less sensitive to the choice of the soil moisture shape parameter of the distribution.  相似文献   

8.
Abstract

In this study, transferability options of the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model parameter (MP) spaces were investigated to estimate ungauged catchment runoff. Three approaches were applied in the study: MP space transfer from single, neighbouring and all potential donor catchments. The model performance was evaluated by a jackknife procedure, where one catchment at a time was treated as if ungauged, and behavioural MP sets from candidate donor catchments were used to estimate the “ungauged” runoff. The results showed that ungauged catchment runoff estimation could not be guaranteed by transferring MP sets from a single physiographically nearest donor catchment. Integrating MP sets typically from one to six donor catchments supplemented the lack of effective MP sets and improved the model performance at the ungauged catchments. In addition, the analysis results revealed that the model performance converged to an average performance when the MP sets of all potential donor catchments were integrated.  相似文献   

9.
10.
抚仙湖集水域地表径流入湖水量模拟   总被引:8,自引:2,他引:6  
徐金涛  张奇  徐力刚 《湖泊科学》2007,19(6):718-726
采用适用于无资料流域、参数较少的SCS模型计算抚仙湖集水域地表径流量.模型考虑了集水域下垫面条件的空间差异,利用Maplnfo/Arc view软件按照土地利用方式与土壤类型的不同,把集水域划分为若干个水文响应单元,分别计算产流量,较准确地模拟了入湖径流量.通过对梁王河流域和大鲫鱼沟流域实测降雨径流资料的分析与反演,提出了适合该区域的产流计算CN值.在对CN值作坡度修正后再应用到其它无观测数据区域.通过模型计算得到的抚仙湖集水域2005年3月1日-2006年2月28日地表径流量为1.74×108 m3,陆面径流系数为0.395.模型为指导抚仙湖集水域径流观测及入湖污染物负荷的计算提供依据.  相似文献   

11.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

12.
Controls on event runoff coefficients in the eastern Italian Alps   总被引:3,自引:0,他引:3  
Analyses of event runoff coefficients provide essential insight on catchment response, particularly if a range of catchments and a range of events are compared by a single indicator. In this study we examine the effect of climate, geology, land use, flood types and initial soil moisture conditions on the distribution functions of the event runoff coefficients for a set of 14 mountainous catchments located in the eastern Italian Alps, ranging in size from 7.3 to 608.4 km2. Runoff coefficients were computed from hourly precipitation, runoff data and estimates of snowmelt. A total of 535 events were analysed over the period 1989–2004. We classified each basin using a “permeability index” which was inferred from a geologic map and ranged from “low” to “high permeability”. A continuous soil moisture accounting model was applied to each catchment to classify ‘wet’ and ‘dry’ initial soil moisture conditions. The results indicate that the spatial distribution of runoff coefficients is highly correlated with mean annual precipitation, with the mean runoff coefficient increasing with mean annual precipitation. Geology, through the ‘permeability index’, is another important control on runoff coefficients for catchments with mean annual precipitation less than 1200 mm. Land use, as indexed by the SCS curve number, influences runoff coefficient distribution to a lesser degree. An analysis of the runoff coefficients by flood type indicates that runoff coefficients increase with event snowmelt. Results show that there exists an intermediate region of subsurface water storage capacity, as indexed by a flow–duration curve-based index, which maximises the impact of initial wetness conditions on the runoff coefficient. This means that the difference between runoff coefficients characterised by wet and dry initial conditions is negligible both for basins with very large storage capacity and for basins with small storage capacity. For basins with intermediate storage capacities, the impact of the initial wetness conditions may be relatively large.  相似文献   

13.
Using hydro-meteorological time series of 50 years and in situ measurements, the dominant runoff processes in perennial Andean headwater catchments in Chile were determined using the hydrological model HBV light. First, cluster analysis was used to identify dry, wet and intermediate years. From these, sub-periods were identified with contrasting seasonal climatic influences on streamflow. By calibrating the model across different periods, impacts on model performance, parameter sensitivity and identifiability were investigated, providing insights into differences in hydrological processes. The modelling approach suggested that, independently of a dry or wet period of calibration, the streamflow response is mostly consistent with flux from groundwater storage, while only a small fraction comes from direct routing of snowmelt. The variation of model parameters, such as the groundwater rate coefficient, was found to be consistent with differing recharge in wet and dry years. The resulting snowmelt–groundwater model is a realistic hypothesis of the hydrological operation of such complex, data scarce and semi-arid Andean catchments. This model may also be a useful tool for predictions of seasonal water availability and a basis for further field studies.  相似文献   

14.
太湖西苕溪流域径流过程的模拟   总被引:4,自引:1,他引:4  
张奇  李恒鹏  徐力刚 《湖泊科学》2006,18(4):401-406
西苕溪是太湖集水域的一个主要流域,研究西苕溪流域径流过程及污染物产出对了解太湖水文水质变化以及开展周围其它流域研究工作具有重要意义.作为研究的第一步,采用集总式模型LASCAM建立了西苕溪流域径流模型.以流域内2个水文观测站1968-1988年日径流观测数据对模型作了率定.率定效果满意,模拟日、年径流量与观测值吻合良好.在流域资料不够充分的情况下,模型能获得较为理想的模拟效果,说明所采用的模型适用于数据不足区域.模拟还揭示,西苕溪流域径流产生可能以饱和地面径流机制为主.近河道浅层饱和土体的水位与降雨量相关性好,呈现出明显的日波动周期;而深层地下水位呈年波动周期,在旱季和雨季,水位呈明显的降落和上升趋势.这些发现为进一步细化径流模型以及建立污染物输移模型奠定了基础.  相似文献   

15.
Hillslopes turn precipitation into runoff and thus exert important controls on various Earth system processes. It remains difficult to collect reliable data necessary for understanding and modeling these Earth system processes in real catchments. To overcome this problem, controlled experiments are being conducted at the Landscape Evolution Observatory at Biosphere 2, The University of Arizona. Previous experiments have revealed differences in hydrological response between 2 landscapes within Landscape Evolution Observatory, even though both landscapes were designed to be identical. In an attempt to discover where the observed differences stem from, we use a fully 3‐dimensional hydrological model (CATchment HYdrology) to show the effect of soil water retention characteristics and saturated hydraulic conductivity on the hydrological response of these 2 hillslopes. We also show that soil water retention characteristics can be derived at hillslope scale from experimental observations of soil moisture and matric potential. It is found that differences in soil packing between the 2 landscapes may be responsible for the observed differences in hydrological response. This modeling study also suggests that soil water retention characteristics and saturated hydraulic conductivity have a profound effect on rainfall–runoff processes at hillslope scale and that parametrization of a single hillslope may be a promising step in modeling rainfall–runoff response in real catchments.  相似文献   

16.
17.
Conceptual rainfall–runoff models are a valuable tool for predictions in ungauged catchments. However, most of them rely on calibration to determine parameter values. Improving the representation of runoff processes in models is an attractive alternative to calibration. Such an approach requires a straightforward, a priori parameter allocation procedure applicable on a wide range of spatial scales. However, such a procedure has not been developed yet. In this paper, we introduce a process‐based runoff generation module (RGM‐PRO) as a spin‐off of the traditional runoff generation module of the PREVAH hydrological modelling system. RGM‐PRO is able to exploit information from maps of runoff types, which are developed on the basis of field investigations and expert knowledge. It is grid based, and within each grid cell, the process heterogeneity is considered to avoid information loss due to grid resolution. The new module is event based, and initial conditions are assimilated and downscaled from continuous simulations of PREVAH, which are also available for real‐time applications. Four parameter allocation strategies were developed, on the basis of the results of sprinkling experiments on 60‐m2 hillslope plots at several grassland locations in Switzerland, and were tested on five catchments on the Swiss Plateau and Prealps. For the same catchments, simulation results obtained with the best parameter allocation strategy were compared with those obtained with different configurations of the traditional runoff generation module of PREVAH, which was also applied as an event‐based module here. These configurations include a version that avoids calibration, one that transfers calibrated parameters, and one that uses regionalised parameter values. RGM‐PRO simulated heavy events in a more realistic way than the uncalibrated traditional runoff generation module of PREVAH, and, in some instances, it even exceeded the performance of the calibrated traditional one. The use of information on the spatial distribution of runoff types additionally proved to be valuable as a regionalisation technique and showed advantages over the other regionalisation approaches, also in terms of robustness and transferability.  相似文献   

18.
Urban stormwater is a major cause of urban flooding and natural water pollution. It is therefore important to assess any hydrologic trends in urban catchments for stormwater management and planning. This study addresses urban hydrological trend analysis by examining trends in variables that characterize hydrological processes. The original and modified Mann‐Kendall methods are applied to trend detection in two French catchments, that is, Chassieu and La Lechere, based on approximately 1 decade of data from local monitoring programs. In both catchments, no trend is found in the major hydrological process driver (i.e., rainfall variables), whereas increasing trends are detected in runoff flow rates. As a consequence, the runoff coefficients tend to increase during the study period, probably due to growing imperviousness with the local urbanization process. In addition, conceptual urban rainfall‐runoff model parameters, which are identified via model calibration with an event based approach, are examined. Trend detection results indicate that there is no trend in the time of concentration in Chassieu, whereas a decreasing trend is present in La Lechere, which, however, needs to be validated with additional data. Sensitivity analysis indicates that the original Mann‐Kendall method is not sensitive to a few noisy values in the data series.  相似文献   

19.
Snowmelt is an important source of runoff in high mountain catchments. Snowmelt modelling for alpine regions remains challenging with scarce gauges. This study simulates the snowmelt in the Karuxung River catchment in the south Tibetan Plateau using an altitude zone based temperature‐index model, calibrates the snow cover area and runoff simulation during 2003–2005 and validates the model performance via snow cover area and runoff simulation in 2006. In the snowmelt and runoff modelling, temperature and precipitation are the two most important inputs. Relevant parameters, such as critical snow fall temperature, temperature lapse rate and precipitation gradient, determine the form and amount of precipitation and distribution of temperature and precipitation in hydrological modelling of the sparsely gauged catchment. Sensitivity analyses show that accurate estimation of these parameters would greatly help in improving the snowmelt simulation accuracy, better describing the snow‐hydrological behaviours and dealing with the data scarcity at higher elevations. Specifically, correlation between the critical snow fall temperature and relative humidity and seasonal patterns of both the temperature lapse rate and the precipitation gradient should be considered in the modelling studies when precipitation form is not logged and meteorological observations are only available at low elevation. More accurate simulation of runoff involving snowmelt, glacier melt and rainfall runoff will improve our understanding of hydrological processes and help assess runoff impacts from a changing climate in high mountain catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Simple runoff models with a low number of model parameters are generally able to simulate catchment runoff reasonably well, but they rely on model calibration, which makes their use in ungauged basins challenging. In a previous study it has been shown that a limited number of streamflow measurements can be quite informative for constraining runoff models. In practice, however, instead of performing such repeated flow measurements, it might be easier to install a stream level logger. Here, a dataset of 600+ gauged basins in the USA was used to study how well models perform when only stream level data, rather than streamflow data, are available. A runoff model (the HBV model) was calibrated assuming that only stream level observations were available, and the simulations were evaluated on the full observed streamflow record. The results indicate that stream level data alone can already provide surprisingly good model simulation results in humid catchments, whereas in arid catchments some form of quantitative information (e.g. a streamflow observation or a regional average value) is needed to obtain good results. These results are encouraging for hydrological observations in data scarce regions as level observations are much easier to obtain than streamflow measurements. Based on runoff modelling, it might even be possible to derive streamflow time series from the level data obtained from loggers, satellites or community‐based approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号