首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   

2.
The unique ecological landscapes are composed of the mountain systems with the obviousvertical differentiation, vast natural desert systems, and oasis systems on which the human beings rely for the existence in the arid areas in West China. Oases are the …  相似文献   

3.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   

4.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   

5.
To identify the groundwater flow system in the North China Plain, the chemical and stable isotopes of the groundwater and surface water were analysed along the Chaobai River and Yongding River basin. According to the field survey, the study area in the North China Plain was classified hydrogeologically into three parts: mountain, piedmont alluvial fan and lowland areas. The change of electrical conductance and pH values coincided with groundwater flow from mountain to lowland areas. The following groundwater types are recognized: Ca? HCO3 and Ca? Mg? HCO3 in mountain areas, Ca? Mg? HCO3 and Na? K? HCO3 in piedmont alluvial fan areas, and HCO3? Na in lowland areas. The stable isotope distribution of groundwater in the study area also has a good corresponding relation with other chemical characteristics. Stable isotope signatures reveal a major recharge from precipitation and surface water in the mountain areas. Chemical and stable isotope analysis data suggest that mountain and piedmont alluvial fan areas were the major recharge zones and the lowland areas belong to the main discharge zone. Precipitation and surface water were the major sources for groundwater in the North China Plain. Stable isotopic enrichment of groundwater near the dam area in front of the piedmont alluvial fan areas shows that the dam water infiltrated to the ground after evaporation. As a result, from the stable isotope analysis, isotope value of groundwater tends to deplete from sea level (horizontal ground surface) to both top of the mountain and the bottom of the lowland areas in symmetrically. This suggests that groundwater in the study area is controlled by the altitude effect. Shallow groundwater in the study area belongs to the local flow system and deep groundwater part of the regional flow system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Mountainous areas are characterized by steep slopes and rocky landforms, with hydrological conditions varying rapidly from upstream to downstream, creating variable interactions between groundwater and surface water. In this study, mechanisms of groundwater–surface water interactions within a headwater catchment of the North China Plain were assessed along the stream length and during different seasons, using hydrochemical and stable isotope data, and groundwater residence times estimated using chlorofluorocarbons. These tracers indicate that the river is gaining, due to groundwater discharge in the headwater catchment both in the dry and rainy seasons. Residence time estimation of groundwater using chlorofluorocarbons data reveals that groundwater flow in the shallow sedimentary aquifer is dominated by the binary mixing of water approximating a piston flow model along 2 flow paths: old water, carried by a regional flow system along the direction of river flow, along with young water, which enters the river through local flow systems from hilly areas adjacent to the river valley (particularly during the rainy season). The larger mixing ratio of young water from lateral groundwater recharge and return flow of irrigation during the rainy season result in higher ion concentrations in groundwater than in the dry season. The binary mixing model showed that the ratio of young water versus total groundwater ranged from 0.88 to 0.22 and 1.0 to 0.74 in the upper and lower reaches, respectively. In the middle reach, meandering stream morphology allows some loss of river water back into the aquifer, leading to increasing estimates of the ratio of young water (from 0.22 to 1). This is also explained by declining groundwater levels near the river, due to groundwater extraction for agricultural irrigation. The switch from a greater predominance of regional flow in the dry season, to more localized groundwater flow paths in the wet season is an important groundwater–surface water interactions mechanism, with important catchment management implications.  相似文献   

7.
ABSTRACT

Appropriate allocation of limited freshwater resources to humans and ecosystems is an important issue hampering sustainable development in mountainous regions. The Taihang Mountain Region (TMR), including the Yellow and Hai river basins, is an important water source area for the North China Plain. The distributed hydrological model Water and Energy transfer Processes in Large river basins (WEP-L) was used to simulate the water cycle processes and to summarize the temporal and spatial changes in the blue and green water in the TMR from 1956 to 2015. The results show that in the period 2011–2015 the annual average blue water decreased by 7.31 × 109 m3, while the annual average green water increased by 13.60 × 109 m3 compared to 1956–1960. At the inter-annual time scale, the blue water exhibited a downward trend while the green water exhibited an upward trend. The amount of seasonal blue water in the TMR is ranked in descending order: summer, autumn, spring and winter, while for green water, the rank is summer, spring, autumn and winter. The amounts of blue and green water are higher on the windward than on the leeward slopes. The blue water yield is generally higher in forests and grasslands than in farmland, while the green water exhibits the opposite response. A greater emphasis should be placed on the widening gap between blue water and green water due to climate warming, and on soil and water conservation measures.  相似文献   

8.
The environment of Bosten Lake in the Mid-Eastern Yanqi Basin (MEYB), an arid inland area in northwest China, has deteriorated greatly due to increasing groundwater exploitation and changes in the interactions between groundwater and surface water. This study intended to simulate the spatio-temporal variability of groundwater and surface water across the entire MEYB over the period 2000–2013. The applicable groundwater flow model and mass balance calculation method for river water were constructed to evaluate the change in groundwater recharged by and discharged to different segments of the Kaidu River. Simulation results show that the entire river seepage in the MEYB increased from 1.05 to 6.17 × 108 m3/year between 2000 and 2013. The increasing river seepage, induced by increasing groundwater exploitation, plays the most important role in the water level decline in the downstream reaches of the Kaidu River and in Bosten Lake. This implies that the current utilization of groundwater resources in the MEYB is unsustainable.  相似文献   

9.
Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil–water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996–2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5‐year period. Intra‐annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
To investigate the water circulation of eastern Qinghai‐Tibet plateau during rainy season, water samples of precipitation, throughfall, fog, soil, litter and xylem were collected for stable isotope analysis. The results showed that precipitation mainly originated as a result of the East Asian Monsoon, and the secondarily evaporated water from subalpine ecosystem was an important part in local atmospheric water cycle. The deuterium excess of rainfall in the alpine meadow was evidently higher than the precipitation in the Dengsheng stations. This suggests that a large part of precipitation in alpine meadow was derived from secondarily evaporated water and the mean contribution was 39·57%, about 3·65 mm produced shortly after rain events. Through the contrast of delta (d)‐excess value in different water samples, it could be concluded that the water in subalpine shrubland and transpiration of subalpine dark coniferous forest were the main source of secondarily evaporated water that transferred to alpine meadow. Hence, the precipitation on the east Qinghai‐Tibet plateau was doubly controlled by monsoon and local water circulation in alpine ecosystems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Based on stable isotopes in stream water, groundwater, and meltwater in the Kaidu River Basin, NW China, we estimated the evaporation enrichment of stable oxygen isotopes in different types of water and separated the contribution of each streamflow component in river run‐off. Our results indicated that δ18O and δ2H in stream water did not vary with altitude regularly but with seasons, with low concentrations in spring and high concentrations in summer. However, the seasonal variations of δ18O and δ2H in groundwater were not as obvious. The mean evaporation enrichment was between 26% and 44% for δ18O. Of the various water types under investigation, we found glaciers were influenced the most, showing an evaporation enrichment of 44%, followed by oasis groundwater (37%), stream water (36%), and mountain groundwater (26%). Overall, meltwater and groundwater were the predominant streamflow components, with their contributions were governed by temperature, and varied both temporally and specially. In the oasis region, groundwater was the predominant contributor (64% in spring, 50% in summer, and 66% in autumn), whereas in the mountains, groundwater was the dominant in spring (53%) and autumn (51%), and meltwater contributed the most in summer (52%). Precipitation contributed less than 15% to the streamflow.  相似文献   

12.
The surface water and groundwater are important components of water cycle, and the interaction between surface water and groundwater is the important part in water cycle research. As the effective tracers in water cycle research, environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively. The study area is the Huaisha River basin, which is located in Huairou district, Beijing. The field surveying and sampling for spring, river and well water were finished in 2002 and 2003. The hydrogen and oxygen isotopes and water quality were measured at the laboratory. The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed. The altitude effect of oxygen isotope in springs was revealed, and then using this equation, theory foundation for deducing recharge source of spring was estimated. By applying the mass balance method, the annual mean groundwater recharge rate at the catchment was estimated. Based on the groundwater recharge analysis, combining the hydrogeological condition analysis, and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin, part of the runoff in the Huaisha River basin is recharged outside of this basin, in other words, this basin is an un-enclosed basin. On the basis of synthetically analyses, combining the compositions of hydrogen and oxygen isotopes and hydrochemistry, geomorphology, geology, and watershed systems characteristics, the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated, and the interaction between surface water and groundwater was re- vealed lastly.  相似文献   

13.
Groundwater is often a critical source of water for municipal, industrial and agricultural uses, especially in arid and semi‐arid environments. Songnen Plain, located in the central part of northeast China, is such a region, it being an important productive base of commodity grain in this country. In the past two decades, groundwater quality in the region, especially salinization, has deteriorated under natural changes and human activities, and has become a crucial factor restricting sustainable eco‐environmental and socio‐economic development. In this paper, The Taoer River catchment, situated in the middle of the region, was selected as the study area for the groundwater quality evolution study using hydrochemistry and stable isotopes to obtain a better understanding of the system. Fifty‐two groundwater samples were collected with systematic design during the low‐water and high‐water periods in 2003. A series of comprehensive quality data interpretations, e.g. statistics, ratios of ions and Piper diagrams, together with stable isotope data, have been used to gain an insight into the spatial and temporal variations and evolution laws of groundwater hydrochemistry. The following main hydrochemical processes were identified as controlling the water quality of the groundwater system: weathering–dissolution, evaporation–condensation, ion‐exchange reactions and groundwater salinization. This latter process, salinization, is the most important process and is caused by the leaching of superficial or near‐surface salts from the saline–alkaline soil into shallow groundwater. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Alpine areas play a major role in water supply in downstream valleys by releasing water during warm and dry periods. However, the hydrogeology of alpine catchments, which are particularly exposed to the effects of climate change, is currently not well understood. Increasing our knowledge of alpine hydrogeological processes is thus of considerable importance for any forward-looking hydrological investigations in alpine areas. The objectives of this study are to quantify seasonal groundwater storage variations in a small Swiss alpine catchment and to evaluate the capabilities of time-lapse gravimetry in the identification of zones of high groundwater storage fluctuations. Time-lapse gravimetric measurements enable rapid localisation of zones of dynamic groundwater storage changes and help to highlight aquifers with a higher storage decrease. Temperature sensors enable measurement of the temporal trend in stream and spring drying in the post-snowmelt period. Stable isotope measurements allow us to identify the origin of surface water exiting the catchment. The results improve our comprehension of a conceptual schema highlighting two different hydrogeological systems: (a) a shallow, rapidly depleted one fed directly by snowmelt and (b) a deeper one, with a slower recession, fed by main recharge during peak snowmelt and emerging at the lower part of the catchment below the talus and moraine of the catchment where bedrock is exposed. These dynamics confirm the high variability of storage in the talus and moraine aquifers and highlight the dominant role of Quaternary deposits and their connectivity to store water over seasonal and multi-year time-scales. The mechanisms explaining the importance of Quaternary deposits are the combination of moraine and talus with different permeabilities allowing the storage of sufficient quantities of water permitting continuous release during drier periods of the year.  相似文献   

15.
Stable isotopic (δDVSMOW and δ18OVSMOW) and geochemical signatures were employed to constrain the geochemical evolution and sources of groundwater recharge in the arid Shule River Basin, Northwestern China, where extensive groundwater extraction occurs for agricultural and domestic supply. Springs in the mountain front of the Qilian Mountains, the Yumen‐Tashi groundwater (YTG), and the Guazhou groundwater (GZG) were Ca‐HCO3, Ca‐Mg‐HCO3‐SO4 and Na‐Mg‐SO4‐Cl type waters, respectively. Total dissolved solids (TDS) and major ion (Mg2+, Na+, Ca2+, K+, SO42?, Cl? and NO3?) concentrations of groundwater gradually increase from the mountain front to the lower reaches of the Guazhou Basin. Geochemical evolution in groundwater was possibly due to a combination of mineral dissolution, mixing processes and evapotranspiration along groundwater flow paths. The isotopic and geochemical variations in melt water, springs, river water, YTG and GZG, together with the end‐member mixing analysis (EMMA) indicate that the springs in the mountain front mainly originate from precipitation, the infiltration of melt water and river in the upper reaches; the lateral groundwater from the mountain front and river water in the middle reaches are probably effective recharge sources for the YTG, while contribution of precipitation to YTG is extremely limited; the GZG is mainly recharged by lateral groundwater flow from the Yumen‐Tashi Basin and irrigation return flow. The general characteristics of groundwater in the Shule River Basin have been initially identified, and the results should facilitate integrated management of groundwater and surface water resources in the study area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
水源动态补给和转化是影响湿地水文过程及其生态效应的重要机制,在黄河流域生态保护和高质量发展的战略背景下,开展沿黄湿地多水源组成分析及转化关系研究,是揭示干旱半干旱区水量转化及湿地生态系统演变机制的关键.本文根据山西省汾河入黄口湿地的水文节律变化特征,选择2019年旱季(5月)、主汛期(7月)和汛末(9月)作为典型时期,...  相似文献   

17.
Precipitation is a major component of the hydrologic cycle in arid desert areas. To date, however, few studies have been conducted on investigating the isotope characteristics and moisture sources of precipitation in arid desert environments. The Alxa Desert Plateau is a critical arid desert area in North China. This study is the first to analyse the stable isotopic composition of precipitation to identify the sources of atmospheric moisture over this plateau. Our results show that the δD and δ18O values of precipitation across the plateau change greatly at both daily and monthly timescales, and exhibit seasonal variations. Among the main meteorological parameters, atmospheric temperature is the most predominant factor controlling the isotopic composition and the δD–δ18O relationship of local precipitation. Analyses of the precipitation isotopes with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model reveal that (a) the westerly and polar moisture sources are the dominant controls on summer and winter precipitation and (b) the evaporation of local lake water significantly affects winter precipitation even though it only represents a small amount. Based on the isotope data of 2013–2016 precipitation, a local meteoric water line (LMWL) is derived: δD = (8.20 ± 0.22)·δ18O + (8.15 ± 2.16)‰ for the study site. Compared to the global meteoric water line, the LMWL has a greater slope and lower d‐excess. This can be explained by admixing of atmospheric moisture resulting from the evaporation of local lake water. Based on this LMWL, we are able to trace that groundwater of the Badain Jaran Desert originates from the surrounding mountains with altitudes of <4,000 m. The newly derived LMWL shows that the recharge altitudes of desert groundwater are overestimated on the basis of the previous LMWLs. This study not only provides insights into the hydrological cycle but also offers guidance for water resource management in arid desert areas of China. Additionally, this study provides techniques that can be applied to the analyses of precipitation isotopes in similar arid regions of the world.  相似文献   

18.
Soil moisture data of 45 years from European Center for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and the in situ observational data are used to study the temporal and spatial characteristics of the soil moisture in boreal spring in the area to the east of 100°E in China. Results show that ERA-40 soil moisture well reproduces the temporal and spatial features of observations. ERA-40 data capture the spatial pattern that the soils in Northeast China and Southwest China are wetter than those...  相似文献   

19.
氮是造成洱海水体富营养化的重要驱动因子,明晰流域内农村及城镇的氮素时空分布特征,对洱海水环境保护有着重要意义.本文利用输出系数模型计算洱海流域的总氮污染负荷及其组成结构;结合GIS空间分析功能,细化26个子流域总氮污染负荷及来源.研究结果表明:1998、2005、2010和2016年的洱海流域总氮污染负荷分别为2442...  相似文献   

20.
Changes in the level of the Yangtze River caused by anthropogenic water regulation have major effects on the hydrological processes and water cycle in surrounding lakes and rivers. In this study, we obtained isotopic evidence of changes in the water cycle of Yangtze River during the two drought years of 2006 and 2013. Isotopic evidence demonstrated that the δ18O and δD levels in Yangtze River exhibited high spatial heterogeneity from the upper to lower reaches, which were controlled by atmospheric precipitation, tributary/lake water mixing, damming regulation, and water temperature. Both the slope and intercept of Yangtze River evaporative line (δD = 7.88 δ18O + 7.96) were slightly higher than those of local meteoric water line of Yangtze River catchment (δD = 7.41 δ18O + 6.01). Most of the river isotopic values were located below the local meteoric water line, thereby implying that the Yangtze River water experienced a certain degree of evaporative enrichment on isotopic compositions of river water. The high fluctuations in the isotopic composition (e.g., deuterium excess [d‐excess]) in the middle to lower reaches during the initial stage of operation for the Three Gorges Dams (2003–2006) were due to heterogeneous isotopic signatures from the upstream water. In contrast to the normal stage (after 2010) characterized by the maximum water level and largest water storage, a relatively small variability in the deuterium excess was found along the middle to lower reaches because of the homogenization of reservoir water with a longer residence time and complete mixing. The effects of water from lakes and tributaries on the isotopic compositions in mainstream water were highlighted because of the high contributions of lakes water (e.g., Dongting Lake and Poyang Lake) efflux to the Yangtze River mainstream, which ranged from 21% to 85% during 2006 and 2013. These findings suggest that the retention and regulation of the Three Gorges Dams has greatly buffered the isotopic variability of the water cycle in the Yangtze catchment, thereby improving our understanding of the complex lake–river interactions along the middle to lower reaches in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号