首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不合理的灌溉、施肥和耕作是导致乌梁素海流域农业面源污染的主要根源,乌梁素海作为我国北方地区重要的生态安全屏障,多年来面临着湖泊水环境污染、水生态退化等问题,科学开展湖泊水环境综合治理首先要解决流域内农业面源污染问题.研究通过修改土壤水平衡、溶质平衡、地下水平衡和作物生长等模块对SWAT 2012原始版本进行改进,并采用改进的SWAT模型构建了乌梁素海流域分布式水文模型,利用实测径流、硝态氮与总磷排放量、地下水埋深以及作物产量校正和验证模型.基于现状情景,以玉米、葵花和小麦3种主要作物为研究对象,设置了削减灌水量、施肥量及调整耕作方式3种农田管理情景.基于改进SWAT模型不同情景的模拟结果,计算分析各管理情景下的硝态氮与总磷负荷及对各作物产量的影响.结果表明,改进SWAT模型具有良好的模拟效果.不同作物削减5%夏灌水量增产最多达8.41%~10.32%,削减10%秋浇水量均明显减少硝态氮和总磷负荷.不同作物营养物负荷均随着氮磷施肥削减比例的增大呈现逐渐降低的趋势,但下降曲线逐渐趋于平缓;各作物产量随氮磷施肥削减比例的增加呈先增加后减少的趋势,其中玉米、小麦氮磷施肥削减比例达20%时产量开...  相似文献   

2.
Sustainable water use is in serious crisis in the piedmont region of the Taihang Mountains in the North China Plain, owing to rapid groundwater drawdown. Estimating the water requirement for agriculture, the biggest user of groundwater, will be helpful in understanding groundwater decline. Through the use of DSSAT‐3·5 wheat and maize models, we assessed water use in winter wheat and maize, two staple crops in the region, in 1987–2001. Trends between groundwater change and simulated agricultural water use were compared. The results showed that groundwater decline was sensitive to simulated crop water requirement and irrigation requirement. According to regression analysis, 100 mm of water requirement by cultivated land (mainly wheat and maize) resulted in about 0·64 m of groundwater decline. This relationship might be useful in understanding the regional water balance and to help decision‐makers control groundwater decline through controlling crop water use or through long‐distance water transfer. The study demonstrated the usefulness of using the DSSAT model for estimating crop water use and the effectiveness of clarifying the reason for groundwater decline using the simulation results of water use. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
We simulated the effects of irrigation on groundwater flow dynamics in the North China Plain by coupling the NIES Integrated Catchment‐based Ecohydrology (NICE) model with DSSAT‐wheat and DSSAT‐maize, two agricultural models. This combined model (NICE‐AGR) was applied to the Hai River catchment and the lower reach of the Yellow River (530 km wide by 840 km long) at a resolution of 5 km. It reproduced excellently the soil moisture, evapotranspiration and crop production of summer maize and winter wheat, correctly estimating crop water use. So, the spatial distribution of crop water use was reasonably estimated at daily steps in the simulation area. In particular, NICE‐AGR reproduced groundwater levels better than the use of statistical water use data. This indicates that NICE‐AGR does not need detailed statistical data on water use, making it very powerful for evaluating and estimating the water dynamics of catchments with little statistical data on seasonal water use. Furthermore, the simulation reproduced the spatial distribution of groundwater level in 1987 and 1988 in the Hebei Plain, showing a major reduction of groundwater level due mainly to overpumping for irrigation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm–cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011–2040, 2041–2070 and 2071–2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm−2 mm−1, 2.07 kg hm−2 mm−1 and 1.92 kg hm−2 mm−1 during 2011–2040, 2041–2070 and 2071–2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.  相似文献   

5.
A simulation and optimization model was developed and applied to an irrigated area in Delta, Utah to optimize the economic benefit, simulate the water demand, and search the related crop area percentages with specified water supply and planted area constraints. The user interface model begins with the weather generation submodel, which produces daily weather data, which is based on long‐term monthly average and standard deviation data from Delta, Utah. To simulate the daily crop water demand and relative crop yield for seven crops in two command areas, the information provided by this submodel was applied to the on‐farm irrigation scheduling submodel. Furthermore, to optimize the project benefit by searching for the best allocation of planted crop areas given the constraints of projected water supply, the results were employed in the genetic algorithm submodel. Optimal planning for the 394·6‐ha area of the Delta irrigation project is projected to produce the maximum economic benefit. That is, projected profit equals US$113 826 and projected water demand equals 3·03 × 106 m3. Also, area percentages of crops within UCA#2 command area are 70·1%, 19% and 10·9% for alfalfa, barley and corn, respectively, and within UCA#4 command area are 41·5%, 38·9%, 14·4% and 5·2% for alfalfa, barley, corn and wheat, respectively. As this model can plan irrigation application depths and allocate crop areas for optimal economic benefit, it can thus be applied to many irrigation projects. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Soil erosion by water is a pressing environmental problem caused and suffered by agriculture in Mediterranean environments. Soil conservation practices can contribute to alleviating this problem. The aim of this study is to gain more profound knowledge of the effects of conservation practices on soil losses by linking crop management and soil status to runoff and sediment losses measured at the outlet of a catchment during seven years. The catchment has 27.42 ha and is located in a commercial farm in southern Spain, where a package of soil conservation practices is an essential component of the farming system. The catchment is devoted to irrigated annual crops with maize–cotton–wheat as the primary rotation. Mean annual rainfall‐induced runoff coefficient was 0.14 and mean annual soil loss was 2.4 Mg ha?1 y?1. Irrigation contributed to 40% of the crop water supply, but the amount of runoff and sediment yield that it generated was negligible. A Principal Components Analysis showed that total soil loss is determined by the magnitude of the event (rainfall and runoff depths, duration) and by factors related to the aggressiveness of the events (rainfall intensity and preceding soil moisture). A third component showed the importance of crop coverage to reduce sediment losses. Cover crops grown during autumn and early winter and crop residues protecting the soil surface enhanced soil conservation notably. The role of irrigation to facilitate growing cover crops in Mediterranean environments is discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Limited urban water supplies in southwestern USA cause water managers and planners to re‐assess water losses and needs from consumptive water use by riparian vegetation. Here, we report on field measurements of evapotranspiration (ET) for inland saltgrass [Distichlis spicata var. stricta (L.) Greene]; a once common riparian plant native to the desert southwest. The objective was to develop a saltgrass crop coefficient, Kc, similar to agricultural crop coefficients commonly used in irrigation water management. The developed Kc, in conjunction with the local climate, can then be used to assess the water savings that may be achieved in riparian zones for saltgrass versus invasive species and for use in irrigation management and scheduling of saltgrass in urban setting. The ET of saltgrass was measured in its native riparian setting located in the flood plain of the Rio Grande, north of Caballo Lake, New Mexico, in 2011 using an eddy covariance technique in the energy budget method. Total ET of 692 mm was measured during the growing season (n = 241 days) and 837 mm during the year. The American Society of Civil Engineers standardized ET for short crop (ETso) was calculated using climate data measured at the study site as 1560 mm during the growing season and 1870 mm during the year. Crop coefficients (ET/ETso) were fitted with a polynomial equation as a function of day of the year to develop saltgrass Kc function. A graphical and simplified method of computing Kc as a function of day of the year and crop season was also developed as an alternative method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Changes in monthly streamflow and the potential influences and feedbacks of agricultural activities are investigated. Significant decreases in streamflow are observed in northern China, including the Yellow, Huaihe and Haihe river basins, while in southern China streamflow increases significantly in the Yangtze, Pearl and South river basins. This spatial pattern of changes in streamflow indicates that the imbalance in water resources between northern (dry) and southern (wet) China has increased during past decades. On the one hand, available water resources are a controlling factor determining the expansion of irrigated land and the structure of crop plantation (i.e. rice, wheat, corn or bean); on the other hand, crop planting structure and effective irrigated areas are important determinants of changes in streamflow. The increasing effective irrigation and rice planting areas in northern China may increase water withdrawal from rivers, causing subsequent decreases in streamflow, while in southeastern China, decreasing effective irrigation areas enhance the increases in streamflow.  相似文献   

9.
Capillary upflow from and deep percolation to a water table may be important in crop water supply in irrigated areas of the lower Yellow River flood plain, north China. These fluxes at the water table and the variations of the capillary upflow in relation to crop evapotranspiration need to be investigated to quantify the effect of a water table on soil water balance and to improve agricultural water management. A large weighing lysimeter was used to determine daily crop evapotranspiration, daily capillary upflow from and daily percolation to a fluctuating water table during a rotation period with wheat growing in a dry season and maize in a rainy season. The water table depth varied in the range 0·7–2·3 m during the maize growth period and 1·6–2·4 m during the wheat growth period. Experimental results showed that the capillary upflow and the percolation were significant components of the soil water balance. Three distinctly different phases for the water fluxes at the water table were observed through the rotation period: water downward period, the period of no or small water fluxes, and water upward period. It implied that the temporal pattern of these water fluxes at the water table was intimately associated with the temporal distribution of rainfall through the rotation period. An empirical equation was determined to estimate the capillary upflow in relation to wheat evapotranspiration and root zone soil water content for local irrigation scheduling. Coupled with the FAO‐Penman–Monteith equation, the equation offers a fast and low cost solution to assess the effect of capillary upflow from a water table on wheat water use. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Grain yield reliability analysis with crop water demand uncertainty   总被引:4,自引:3,他引:4  
A new method of reliability analysis for crop water production function is presented considering crop water demand uncertainty. The procedure uses an advanced first-order second moment (AFOSM) method in evaluating the crop yield failure probability. To determine the variance and the mean of actual evapotranspiration as the component of interest for AFOSM analysis, an explicit stochastic optimization model for optimal irrigation scheduling is developed based on the first and second-order moment analysis of the soil moisture state variables. As a result of the study, the violation probabilities of crop yield at different levels were computed from AFOSM method. Also using the optimization results and the double bounded density function estimation methodology, the weekly soil moisture density function is derived which can be used as a short term reliability index. The proposed approach does not involve any discretization of system variables. The results of reliability analysis and optimization model compare favorably with those obtained from simulation.  相似文献   

11.
为揭示农户个体行为与流域农业非点源营养盐产生和控制政策之间的逻辑关系,以珠江流域为研究对象,采用系统动力学模型与多主体农户和农村环境管理模型耦合构建流域营养盐污染控制政策的情景分析方法,基于农户在化肥税和农药税组合型政策下的生产行为设计了基准情景、低化肥税情景、中化肥税情景和高化肥税情景4种具有代表性的情景方案,并在各种情景下定量描述流域营养盐对农业政策的响应和评估流域营养盐控制的优选政策方案.结果显示:从农业投入和产出的角度看,2030年低化肥税情景、中化肥税情景和高化肥税情景的化肥施用量相对基准情景分别减少了24.0%、39.8%和50.2%,农药使用量分别减少了27.6%、32.8%和37.4%,农作物产量分别减少了10.0%、16.3%和21.2%,畜禽养殖量分别增加了5.9%、7.5%和14.0%;2030年,基准情景、低化肥税情景、中化肥税情景和高化肥税情景的总氮入河量分别达到94.5、85.1、78.5和75.3万t,总磷入河量分别达到14.0、12.8、12.0和11.6万t;化肥税和农药税的组合型政策能够有效减少营养盐污染量,然而,中化肥税情景和高化肥税情景比低化肥税情景的边际效果小、经济成本高、农作物产出低和畜禽污染高,故低化肥税情景被认为是控制珠江流域营养盐污染的最优方案.  相似文献   

12.
Chen Sun  Li Ren 《水文研究》2013,27(8):1200-1222
Quantitative assessment of surface water resources (SWRs) and evapotranspiration (ET) is essential and significant for reasonably planning and managing water resources in the Haihe River basin which is facing severe water shortage. In this study, a distributed hydrological model of the Haihe River basin was constructed using the Soil and Water Assessment Tool, well considering the reservoirs and agricultural management practices for reasonable simulation. The crop parameters were independently calibrated with the observed crop data at six experimental stations. Then, sensitivity ranks of hydrological parameters were analysed, which suggested the important parameters used for calibration. The model was successfully calibrated using the monthly observed data of discharge in around 1970–1991 and actual ET (ETa) in 2002–2004 for the mountainous area and Haihe plain, respectively. Meanwhile, good agreements between the simulated and statistical crop yields in 1985–2005 further verified the model's appropriateness. Finally, the calibrated model was used to assess SWRs and ETa in time and space during 1961–2005. Results showed that the average annual natural SWRs and the ETa were about 17.5 billion cubic metre and 542 mm, respectively, both with a slight downward trend. The spatial distributions of both SWRs and ETa were significantly impacted by variations of precipitation and land use. Moreover, the reservoir in operation was the main factor for the noticeable decline of actual SWRs. In the Haihe plain, the ETa with irrigation was increased by 46% compared with that under rainfed conditions. In addition, this study identified the regions with potential to improve the irrigation effects on water use. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater recharge and discharge in the Akesu alluvial plain were estimated using a water balance method. The Akesu alluvial plain (4842 km2) is an oasis located in the hyperarid Tarim River basin of central Asia. The land along the Akesu River has a long history of agricultural development and the irrigation area is highly dependent on water withdrawals from the river. We present a water balance methodology to describe (a) surface water and groundwater interaction and (b) groundwater interaction between irrigated and non‐irrigated areas. Groundwater is recharged from the irrigation system and discharged in the non‐irrigated area. Uncultivated vegetation and wetlands are supplied from groundwater in the hyperarid environment. Results show that about 90% of groundwater recharge came from canal loss and field infiltration. The groundwater flow from irrigated to non‐irrigated areas was about 70% of non‐irrigated area recharge and acted as subsurface drainage for the irrigation area. This desalinated the irrigation area and supplied water to the non‐irrigated area. Salt moved to the non‐irrigation area following subsurface drainage. We conclude that the flooding of the Akesu River is a supplemental groundwater replenishment mechanism: the river desalinates the alluvial plain by recharging fresh water in summer and draining saline regeneration water in winter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Shallow groundwater plays a key role in agro‐hydrological processes of arid areas. Groundwater often supplies a necessary part of the water requirement of crops and surrounding native vegetation, such as groundwater‐dependent ecosystems. However, the impact of water‐saving irrigation on cropland water balance, such as the contribution of shallow groundwater to field evapotranspiration, requires further investigation. Increased understanding of quantitative evaluation of field‐scale water productivity under different irrigation methods aids policy and decision‐making. In this study, high‐resolution water table depth and soil water content in field maize were monitored under conditions of flood irrigation (FI) and drip irrigation (DI), respectively. Groundwater evapotranspiration (ETg) was estimated by the combination of the water table fluctuation method and an empirical groundwater–soil–atmosphere continuum model. The results indicate that daily ETg at different growth stages varies under the two irrigation methods. Between two consecutive irrigation events of the FI site, daily ETg rate increases from zero to greater than that of the DI site. Maize under DI steadily consumes more groundwater than FI, accounting for 16.4% and 14.5% of ETa, respectively. Overall, FI recharges groundwater, whereas DI extracts water from shallow groundwater. The yield under DI increases compared with that under FI, with less ETa (526 mm) compared with FI (578 mm), and irrigation water productivity improves from 3.51 kg m?3 (FI) to 4.58 kg m?3 (DI) through reducing deep drainage and soil evaporation by DI. These results highlight the critical role of irrigation method and groundwater on crop water consumption and productivity. This study provides important information to aid the development of agricultural irrigation schemes in arid areas with shallow groundwater.  相似文献   

16.
Reliable information on water use and availability at basin and field scales are important to ensure the optimized constructive uses of available water resources. This study was conducted with the specific objective to estimate Landsat-based actual evapotranspiration (ETa) using the Operational Simplified Surface Energy Balance (SSEBop) model across the state of South Dakota (SD), USA for the 1986–2018 (33-year) period. Validated ETa estimations (r2 = 0.91, PBIAS = −4%, and %RMSE = 11.8%) were further used to understand the crop water-use characteristics and existing historic mono-directional (increasing/decreasing) trends over the eastern (ESD) and western (WSD) regions of SD. The crop water-use characteristics indicated that the annual cropland water uses across the ESD and WSD were more or less met by the precipitation amounts in the area. The ample water supply and distribution have led to high rainfed and low percentage of irrigated cropland (~2.5%) in the state. The WSD faced greater crop-water use reductions than the ESD during drought periods. The landscape ETa responses across the state were found to be more sensitive than precipitation for the drought impact assessments. The Mann Kendall trend analysis revealed the absence of a significant trend (p > 0.05) in annual ETa at a regional scale due to the varying weather conditions in the state. However, about 12% and 9% cropland areas in the ESD and WSD, respectively, revealed a significant mono-directional trend at pixel scale ETa. Most of the pixels under significant trend showed an increasing trend that can be explained by the shift in agricultural practices, increased irrigated cropland area, higher productions, moisture regime shifts, and decreased risk of farming in the dry areas. The decreasing trend pixels were clustered in mid-eastern SD and could be the result of dynamic conversion of wetlands to croplands and decreased irrigation practices in the region. This study also demonstrates the tremendous potential and robustness of the SSEBop model, Landsat imagery, and remote sensing-based ETa modelling approaches in estimating consistent spatially distributed evapotranspiration.  相似文献   

17.
We aim to determine the effects of agricultural factors input per hectare on wheat production, and to optimize the allocation of wheat production factors under three scenarios and in different operating modes. Data were collected from 204 farming households using a face-to-face questionnaire. The sampled farms were selected through a stratified random sampling technique. We find fertilizer cost, irrigation cost and machinery cost all positively and significantly affect the per-unit-area wheat production, indicating the labor cost is not the major driving factor on wheat yield increment. Multi-object optimization model is used to allocate the production factors per hectare. We find under the Business as usual (BAU) scenario, the irrigation cost per-hectare wheat production after optimization in 2014 grows at a rate of 24.31% and accounts for 14.9% of total input. Under the Cooperate Environmental Sustainability (CES) scenario, the fertilizer and pesticide costs after optimization drop significantly by 42.83% and 21.41%, respectively. Under the Rapid Benefit Growth (RBG) scenario, the irrigation cost after optimization increase by 2.56% and the fertilizer cost increases by 4.69% compared with the surveyed data. Comparison of optimized data among three operating modes shows that the labor costs at household farm and cooperative farm both increase significantly. Cooperative farms are more successful in production factor use efficiency and economic performance. In conclusion, wheat production at different operating modes could be improved so as to constitute more efficient and economic use of production factors.  相似文献   

18.
Long Xuyen Quadrangle is one of the important agricultural areas of the Mekong Delta of Vietnam accounting for 25% of rice production. In recent years, the area faces drought and salinization problems, as part of climate change impact and sea level rise. These are the main causes that led to the crop water deficits for agricultural production. Therefore, this work was conducted to predict crop water requirement (CWR) based on consideration of other related meteorological factors and further redefine the crop planting calendar (CPC) for three main cropping seasons including winter–spring (WS), summer–autumn (SA) and autumn–spring (AS) using the Cropwat crop model based on the current climate conditions and future climate change scenarios. Meteorological data for the baseline period (2006–2016) and future corresponding to timescales 2020s, 2055s and 2090s of Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios are used to predict CWR and CPC for the study area. The results showed that WS and SA crops needed more irrigation water than AS crop and the highest irrigation water requirement of the WS and SA crops occurred on developmental stage, while the AW crop appeared on growth, developmental and late stage for the baseline and timescales of RCP4.5 and RCP8.5 scenarios. Calculation results of the shift of CPC indicated that the CWR of the AW crop decreased lowest approximately 6.6–20.6% for timescales of RCP4.5 scenario and 20.6–25.5% for RCP8.5 scenario compared with the baseline.  相似文献   

19.
In this study, a field experiment was conducted to investigate the soil water dynamics and water percolation through the deep vadose zone. A calibrated HYDRUS‐1D model was used to simulate the process of soil water movement and the water budget. Based on the measured volumetric soil water contents, the model was well calibrated and validated. Then, we conducted scenario analyses to determine the combined effects of irrigation amount (IA), antecedent soil moisture (AM), crop evapotranspiration, and deep percolation (DP) in an irrigation event. Four IAs (5, 10, 15, and 20 cm) and three AM conditions (AM‐1, AM‐2, and AM‐3) were controlled in the scenario analyses. The results indicate that according to the Se's (effective saturation) values status and the observed or simulated depth, there could be different conclusions on the influence of DP. Under different IAs in dry (AM‐1) and medium (AM‐2) AM status, DP changed slightly; it was 0.39 and 2.47 cm in AM‐1 and 0.40 and 2.48 cm in AM‐2 for the summer maize and winter wheat crop, respectively; the AM had a crucial contribution to DP. While under the condition of wet AM (AM‐3) or small observation depth, the water inputs could have a significant effect on DP. According to increasing irrigation intensity, the higher values of Se (>0.6) in the whole profile were only displayed between 70 and 300 cm at AM‐1, 70–500 cm at AM‐2, and 70‐below 600 cm at AM‐3, which were gradually extended and moved down with increasing AM. Hence, the IA significantly affected the water percolation at a depth of 200 cm, whereas there was a weak influence at 600 cm except in AM‐3. Furthermore, in the higher values of the Se (>0.65) domain, the correlation between IA and DP was an exponential function and significantly under P < 0.05. In addition, DP began to occur when the soil water content was equal to or greater than 0.75 times that of the field water capacity or the Se > 0.65. When the coarse silt layer became embedded in the silt clay soil profile, it lagged the process of water transport but did not affect permeability in the end.  相似文献   

20.
Crop residue burning and imbalanced use of chemical fertilizers in intensive cereal–cereal rotations are present ecological threats in any agro‐ecosystem of the world. Therefore, identification of best suitable agricultural practices can be a feasible option. The present experiment was initiated in 2013 and consisted of four residue levels (0, 2, 4, and 6 Mg ha?1) and five potassium (K) levels (0, 50, 100, 150% recommended dose of K and 50%RDK+K solubilizing bacteria, KSB). Crop residue (CR) and K management significantly improve crop and soil quality associated parameters. Among the treatments, maximum increase in crop growth, physiological parameters, grain yield, quality aspects, and water productivity are recorded with the application of 4–6 Mg ha?1 CR. Application of 50%RDK+KSB also significantly increases crop and soil related parameters. Soil quality indicators (bulk density, pH, electrical conductivity, and available micronutrients) do not vary significantly with CR and K management. Change in soil organic carbon status, soil enzymes, and potassium‐solubilizing bacterial count are significantly increased with 4–6 Mg ha?1 CR and application of 50%RDK+KSB, and this is in accordance with correlation study carried out. Therefore, it is concluded that CR retention (4–6 Mg ha?1) and reduction of inorganic K fertilizer by 50% and inoculation of KSB enhance the soil quality indicators and thereby improve crop growth, physiological parameters, grain yield, and quality aspects along with water productivity under zero till maize–wheat rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号