首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
In recent years, ground‐penetrating radar (GPR) has been increasingly used for characterization of subglacial and englacial environments at polythermal glaciers. The geophysical method is able to exploit the dielectric difference between water, air, sediment and ice, allowing delineation of subsurface hydrological, thermal and structural conditions. More recent GPR research has endeavoured to examine temporal change in glaciers, in particular the distribution of the cold ice zone at polythermal glaciers. However, the exact nature of temporal change that can be identified using GPR has not been fully examined. This research presents the results of three GPR surveys conducted over the course of a summer ablation season at a polythermal glacier in the Canadian Arctic. A total of approximately 30 km of GPR profiles were collected in 2002 repeatedly covering the lower 2 km of Stagnation Glacier, Bylot Island (72°58′ N 78°22′ W). Comparison between profiles indicated changes in the radar signature, including increased noise, appearance and disappearance of englacial reflections, and signal attenuation in the latter survey. Further, an area of chaotic returns in up‐glacier locations, which was interpreted to be a wet temperate ice zone, showed marked recession over the course of the ablation season. Combining all the temporal changes that were detected by GPR, results indicate that a polythermal glacier may exhibit strongly seasonal changes in hydrological and thermal characteristics throughout the ice body, including the drainage of 17 000 m3 of temporarily stored intra‐glacial meltwater. It is also proposed that the liquid water content in the temperate ice zone of polythermal glaciers can be described as a fraction of a specific retention capacity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short‐term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom‐built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ‘low’ suspended sediment concentrations. ‘Irregular’ transfer patterns were generally associated with ‘high’ sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Drumlin shape has been hypothesized to correlate with ice-flow duration and slip speed, but modern-day analogues and the Coulomb nature of till render the basis of these correlations in question. The evolution of flow-parallel subglacial landforms is of importance for ice flow because the form drag they provide may be a dominant factor in regulating glacier slip speeds. Here we examine the relationship between drumlin shape and cumulative slip displacement (i.e. time-integrated slip speed) as a dominant glaciological control on drumlin shape. First, a new method is developed that allows slip speed to be estimated for deformable bedded glaciers along a flow line from an ice surface profile. Then, reconstructed surface profiles for ice margin chronologies of the Green Bay Lobe (GBL) are used to construct and estimate the spatially varying cumulative slip displacement for use in comparison with drumlin elongation ratios. We focus on a sector of the GBL near the central flow line where the geology is simple and glaciological controls are likely to dominate bedform development. Using Bayesian statistical analysis, a positive and statistically robust relationship between cumulative slip displacement and drumlin elongation ratio is found. Our analysis indicates that drumlin shape could be used to infer palaeo glacier slip speeds if time under the ice can be well constrained and geologic influences are minimal. These findings also suggest that drumlin-supplied drag could decrease with increased cumulative slip displacement in the absence of rigid geologic features that fix drumlin positions.  相似文献   

4.
The transformation of snowmelt water chemical composition during melt, elution and runoff in an Arctic tundra basin is investigated. The chemistry of the water flowing along pathways from the surface of melting snow to the 95·5 ha basin outlet is related to relevant hydrological processes. In so doing, this paper offers physically based explanations for the transformation of major ion concentrations and loads of runoff water associated with snowmelt and rainfall along hydrological pathways to the stream outlet. Late‐lying snowdrifts were found to influence the ion chemistry in adjacent reaches of the stream channel greatly. As the initial pulse of ion‐rich melt water drained from the snowdrift and was conveyed through hillslope flowpaths, the concentrations of most ions increased, and the duration of the peak ionic pulse lengthened. Over the first 3 m of overland flow, the concentrations of all ions except for NO increased by one to two orders of magnitude, with the largest increase for K+, Ca2+ and Mg2+. This was roughly equivalent to the concentration increase that resulted from percolation of relatively dilute water through 0·25 m of unsaturated soil. The Na+ and Cl? were the dominant ions in snowmelt water, whereas Ca2+ and Mg2+ dominated the hillslope runoff. On slopes below a large melting snowdrift, ion concentrations of melt water flowing in the saturated layer of the soil were very similar to the relatively dilute concentrations found in surface runoff. However, once the snowdrift ablated, ion concentrations of subsurface flow increased above parent melt‐water concentrations. Three seasonally characteristic hydrochemical regimes were identified in a stream reach adjacent to late‐lying snowdrifts. In the first two stages, the water chemistry in the stream channel strongly resembled the hillslope drainage water. In the third stage, in‐stream geochemical processes, including the weathering/ion exchange of Ca2+ and Mg2+, were the main control of streamwater chemistry. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Intensive seismic exploration in the Northwest Territories began in the late 1960s. Since that time, the legacy of seismic surveys – i.e. straight lines cutting through boreal forest and tundra – has remained visible throughout northern Canada and Alaska. The removal of trees and compaction of the ground surface alter the thermophysical properties of the active (i.e. seasonally thawed) layer to such an extent that the underlying permafrost seriously degrades or even disappears completely. Such a transformation along linear corridors that cut indiscriminately across different terrain types with contrasting hydrological functions has potentially serious implications to the redistribution of water and energy within and among landscape units with feedbacks to permafrost thaw, land cover change and run‐off generation. This paper characterizes the flow and storage of water and energy along a seismic cut line in the high boreal zone of discontinuous permafrost in order to improve the understanding of these processes, their interactions and hydrological implications. As such, this paper lays a conceptual foundation for the development of numerical models needed to predict the hydrological and thermal impact of seismic lines in this sensitive region. We used ground‐penetrating radar and multi‐year ground temperatures and water levels along a seismic line to estimate the degree of permafrost degradation below it. The seismic line studied extends from a permafrost‐free wetland (flat bog), over a permafrost body (peat plateau) and into another permafrost‐free wetland (channel fen). It was found that once thaw had lowered the permafrost table below the ground surface elevation of the flat bog and channel fen, the seismic line forms a hydrological connection between them. It was also shown that during the permafrost thaw process, seismic lines develop a perennially thawed layer (talik) between the overlying active layer and underlying permafrost and that the talik conveys water as a conduit throughout the year. The implications of such drainage through seismic lines and networks on basin drainage in peatland‐dominated regions with discontinuous permafrost are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号