首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an assessment of the relationship between near-surface soil moisture (SM) and SM at other depths in the root zone under three different land uses: irrigated corn, rainfed corn and grass. This research addresses the question whether or not near-surface SM can be used reliably to predict plant available root zone SM and SM at other depths. For this study, a realistic soil-water energy balance process model is applied to three locations in Nebraska representing an east-to-west hydroclimatic gradient in the Great Plains. The applications were completed from 1982 through to 1999 at a daily time scale. The simulated SM climatologies are developed for the root zone as a whole and for the five layers of the soil profile to a depth of 1·2 m. Over all, the relationship between near-surface SM (0–2·5 cm) and plant available root zone SM is not strong. This applies to all land uses and for all locations. For example, r estimates range from 0·02 to 0·33 for this relationship. Results for near-surface SM and SM of several depths suggest improvement in r estimates. For example, these estimates range from − 0·19 to 0·69 for all land uses and locations. It was clear that r estimates are the highest (0·49–0·69) between near-surface and the second layer (2·5–30·5 cm) of the root zone. The strength of this type of relationship rapidly declines for deeper depths. Cross-correlation estimates also suggest that at various time-lags the strength of the relationship between near-surface SM and plant available SM is not strong. The strength of the relationship between SM modulation of the near surface and second layer over various time-lags slightly improves over no lags. The results suggest that use of near-surface SM for estimating SM at 2·5–30 cm is most promising. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Temporal patterns in specific runoff, dissolved organic carbon concentrations [DOC] and fluxes were examined during two periods: 1994–1997 (period 1) and 2007–2009 (period 2) in five adjacent tributary catchments of Lake Simcoe, the largest lake in southern Ontario, Canada. The catchments displayed similar patterns of land use change with increases in urbanization (5–16%) and forest cover (0.2–4%) and declines in agriculture (4–8%) between 1994 and 2008. Climate in the catchments was similar; temperature increased slightly, but no significant change in precipitation was observed. Despite similar pattern of climate and land use, runoff responses and tributary [DOC] were different across the catchments. Following a very dry year (i.e. 1999), runoff increased steadily until the end of record. We observed increased variability in tributary [DOC] and higher DOC exports in period 2. This led to ~10% increase in [DOC] and a 13% increase in flux between the two study periods. Between the two periods, [DOC] increased by 15% in spring and 25% in summer, whereas flux increased by 17% in spring and 48% in summer. [DOC] was consistently higher in the growing (summer + autumn) than the dormant (winter + spring, minus spring melt months) seasons, but no unique pattern or simple linear flow/concentrations relationships existed. This suggests complex spatial and temporal pattern to runoff controls on DOC and flow dynamics in adjacent catchments. We therefore caution against extrapolating from monitored to unmonitored catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Through combining the soil respiration with the main environmental factors under the planting shelterbelt (Populus woodland) and the natural desert vegetation (Tamarix ramosissima Phragmites communis community and Haloxylon ammodendron community) in the western Junngar Basin, the difference in soil respiration under different land use/land cover types and the responses of soil respiration to temperature and soil moisture were analyzed. Results showed that the rate of soil respiration increased with temperature. During the daytime, the maximum soil respiration rate occurred at 18:00 for the Populus woodland, 12:00 for T. ramosissima Ph. communis community, and 14:00 for H. ammodendron community, while the minimum rate all occurred at 8:00. The soil respiration, with the maximum rate in June and July and then declining from August, exhibited a similar trend to the near-surface temperature from May to October. During the growing season, the mean soil respiration rates and seasonal variation differed among the land use/land cover types, and followed the order of Populus woodland >T. ramosissima Ph. communis community > H. ammodendron community. The difference in the soil respiration rate among different land use/land cover types was significant. The soil respiration of Pouplus woodland was significantly correlated with the near-surface temperature and soil temperature at 10 cm depth (P < 0.01) in an exponential manner. The soil respiration of T. ramosissima Ph. communis and H. ammodendron communities were all linearly correlated with the near-surface temperature and soil surface temperature (P < 0.01). Based on the near-surface tempera-ture, the calculated Q10 of Populus woodland, T. ramosissima Ph. communis community and H. ammodendron community were 1.48, 1.59 and 1.63, respectively. The integrated soil respiration of the three land use/land cover types showed a significant correlation with the soil moisture at 0―5 cm, 5― 15 cm and 0―15 cm depths (P < 0.01). The quadratic model could best describe the relationship between soil respiration and soil moisture at 0―5 cm depth (P < 0.01).  相似文献   

4.
Hydrological events transport large proportions of annual or seasonal dissolved organic carbon (DOC) loads from catchments to streams. The timing, magnitude and intensity of these events are very sensitive to changes in temperature and precipitation patterns, particularly across the boreal region where snowpacks are declining and summer droughts are increasing. It is important to understand how landscape characteristics modulate event-scale DOC dynamics in order to scale up predictions from sites across regions, and to understand how climatic changes will influence DOC dynamics across the boreal forest. The goal of this study was to assess variability in DOC concentrations in boreal headwater streams across catchments with varying physiographic characteristics (e.g., size, proportion of wetland) during a range of hydrological events (e.g., spring snowmelt, summer/fall storm events). From 2016 to 2017, continuous discharge and sub-daily chemistry grab samples were collected from three adjacent study catchments located at the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Catchment differences were more apparent in summer and fall events and less apparent during early spring melt events. Hysteresis analysis suggested that DOC sources were proximal to the stream for all events at a catchment dominated by a large wetland near the outlet, but distal from the stream at the catchments that lacked significant wetland coverage during the summer and fall. Wetland coverage also influenced responses of DOC export to antecedent moisture; at the wetland-dominated catchment, there were consistent negative relationships between DOC concentrations and antecedent moisture, while at the catchments without large wetlands, the relationships were positive or not significant. These results emphasize the utility of sub-daily sampling for inferring catchment DOC transport processes, and the importance of considering catchment-specific factors when predicting event-scale DOC behaviour.  相似文献   

5.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In semiarid ecosystems, the transfer of water, sediments, and nutrients from bare to vegetated areas is known to be crucial to ecosystem functioning. Rainfall simulation experiments were performed on bare‐soil and vegetated surfaces, on both wet and dry soils, in semiarid shrub‐steppe landscapes of SE Spain to investigate the spatial and temporal factors and interactions that control the fine‐scale variation in water infiltration, runoff and soil loss, and hence the water and sediment flows in these areas. Three types of shrub‐steppe landscapes varying in plant community and physiography, and four types of plant patches (oak shrub, subshrub, tussock grass, and short grass mixed with chamaephytes) were studied. Higher infiltration and lower runoff and soil loss were measured on vegetation patches than on bare soils, for both dry and wet conditions. The oak‐shrub patches produced no runoff, while the subshrub patches showed the highest runoff and soil loss. Despite these differences among patch types, the influence of vegetation patch type on the variables analysed was not significant. The response of bare soil surfaces clearly varied between landscape types, yet the differences were only relevant under dry soil conditions. Stone cover, particularly the cover of embedded stones, and crust cover, were the key explanatory variables for the hydrological behaviour of bare soils. The study documents quantitatively how bare soils and vegetation patches function as runoff sources and runoff sinks, respectively, for a wide range of soil moisture conditions, and illustrates that landscape‐type effects on bare‐soil runoff sources may also exert an important control on the site hydrology, while the role of the vegetation patch type is less important. The effects of the control factors are modulated by antecedent soil moisture, with dry soils showing the most contrasting soil water infiltration between landscapes and surface types. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
不同尺度流域地表径流氮、磷浓度比较   总被引:16,自引:2,他引:16  
选择太湖上游为研究对象,采集了1-400 km2不同尺度小流域产出径流TN、TP浓度实测数据,结合前期开展的地表坡面流人工暴雨实验监测结果,开展不同尺度流域水质监测对水体面源污染产出浓度估算影响的比较研究,探讨流域尺度之间入渗、汇流以及伴随的流域生态系统营养盐调节机制的差异.结果表明,流域监测尺度对土地利用面源污染产出浓度估算有较大影响.地表坡面流由于未经过流域汇流过程伴随的下渗滤过与吸附等过程,产出径流TN、TP浓度一般高于小流域.小流域林地生态系统具有较强的入渗机制、接近自然的生态沟谷汇流网络,对面源污染TN、TP有较强的削减作用.农业生态系统较弱的入渗机制、人工沟渠汇流网络对面源污染TN、TP的削减作用较弱.现代农业造成流域面源污染增加不仅仅是因为人类农业活动对流域局部土体及养分的改变,农业生态系统改变流域自然生态系统整体水文过程及营养盐调节机制也是面源污染增加的重要因素之一,恢复小尺度的生态沟谷网络系统对削减流域面源污染具有重要的意义.  相似文献   

8.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Surface soil hydraulic properties are key factors controlling the partition of rainfall and snowmelt into runoff and soil water storage, and their knowledge is needed for sound land management. The objective of this study was to evaluate the effects of three land uses (native grass, brome grass and cultivated) on surface soil hydraulic properties under near‐saturated conditions at the St Denis National Wildlife Area, Saskatchewan, Canada. For each land use, water infiltration rates were measured using double‐ring and tension infiltrometers at ?0·3, ?0·7, ?1·5 and ?2·2 kPa pressure heads. Macroporosity and unsaturated hydraulic properties of the surface soil were estimated. Mean field‐saturated hydraulic conductivity (Kfs), unsaturated hydraulic conductivity at ?0·3 kPa pressure head, inverse capillary length scale (α) and water‐conducting macroporosity were compared for different land uses. These parameters of the native grass and brome grass sites were significantly (p < 0·1) higher than that of the cultivated sites. At the ?0·3 kPa pressure head, hydraulic conductivity of grasslands was two to three times greater than that of cultivated lands. Values of α were about two times and values of Kfs about four times greater in grasslands than in cultivated fields. Water‐conducting macroporosity of grasslands and cultivated fields were 0·04% and 0·01% of the total soil volume, respectively. Over 90% of the total water flux at ?0·06 kPa pressure head was transmitted through pores > 1·36 × 10?4 m in diameter in the three land uses. Land use modified near‐saturated hydraulic properties of surface soil and consequently may alter the water balance of the area by changing the amount of surface runoff and soil water storage. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
郑达燕  刘睿  张柳柳  郑财贵  张静 《湖泊科学》2023,35(4):1343-1358
三峡库区拥有目前世界上规模最大的水利枢纽工程,自投入使用以来,为长江流域提供了丰富的水源及电力,促进了经济的发展,但同时也对该区域的生态环境造成了严重的冲击。澎溪河流域作为三峡库区长江流域干流的典型回水区和消落带,是众多学者研究三峡库区生态环境变化的重点区域。为探究不同时空尺度下土地利用对河流溶解性有机质(DOM)的影响,以澎溪河流域为研究对象,基于紫外-可见光谱分析和三维荧光光谱矩阵-平行因子分析,结合河段缓冲区、河岸带缓冲区及子流域3种空间尺度的二级土地利用类型,解析了旱雨季水体DOM的组成及来源特征,并采用相关分析和冗余分析方法探讨了3种空间尺度下土地利用方式对旱雨季水体DOM的多时空尺度影响。结果表明:(1)旱季水体DOM荧光组分以陆源类腐殖质所占比例更大,雨季水体DOM荧光组分以富里酸贡献为主。(2)流域内陆源输入和内源产生对水体DOM丰度均有贡献,雨季较旱季水体DOM的陆源性更强,自生源特征较弱。(3)土地利用在雨季和子流域尺度下对水体DOM的影响更显著,其中,雨季子流域尺度下,土地利用指数对水体DOM参数的解释率为90.35%。(4)不同土地利用方式对水体DOM产生的影响...  相似文献   

11.
A record spanning almost 20 years of suspended sediment and discharge measurements on two reaches of an agricultural watershed is used to assess the influence of in‐channel sediment supplies and bed composition on suspended sediment concentrations (SSC). We analyse discharge‐SSC relationships from two small streams of similar hydrology, climate and land use but widely different bed compositions (one dominated by sand, the other by gravel). Given that sand‐dominated systems have more fine sediment available for transport, we use bed composition and the relative proportion of surface sand and gravel to be representative of in‐channel sediment supply. Both high flow events and lower flows associated with onset and late recessional storm flow (‘low flows’) are analysed in order to distinguish external from in‐channel sources of sediment and to assess the relationship between low flows and sediment supply. We find that SSC during low flows is affected by changes to sediment supply, not just discharge capacity, indicated by the variation in the discharge‐SSC relationship both within and between low flows. Results also demonstrate that suspended sediment and discharge dynamics differ between reaches; high bed sand fractions provide a steady supply of sediment that is quickly replenished, resulting in more frequent sediment‐mobilizing low flow and relatively constant SSC between floods. In contrast, SSC of a gravel‐dominated reach vary widely between events, with high SSC generally associated with only one or two high‐flow events. Results lend support to the idea that fine sediment is both more available and more easily transported from sand‐dominated streambeds, especially during low flows, providing evidence that bed composition and in‐channel sediment supplies may play important roles in the mobilization and transport of fine sediment. In addition, the analysis of low‐flow conditions, an approach unique to this study, provides insight into alternative and potentially significant factors that control fine sediment dynamics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A system identification approach can be incorporated in groundwater time series analysis, revealing information concerning the local hydrogeological situation. The aim of this work was to analyse water table fluctuations in an outcrop area of the Guarani Aquifer System (GAS) in Brotas/SP, Brazil, using data from a groundwater monitoring network. The water table dynamic was modelled using continuous time series models that reference the hydrogeological system upon which they operate. The model’s climatological inputs of precipitation and evapotranspiration generate impulse response (IR) functions with parameters that can be related to the physical conditions concerning the hydrological processes involved. The interpretation of the model parameters from two sets of monitoring wells selected at different land-use sites is presented, exemplifying the effect of different water table depths and the distance to the nearest drainage location. Systematic trends of water table depths were also identified from model parameters at specific periods and related to plant development, crop harvest and land-use changes.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR L. Ruiz  相似文献   

13.
Nitrogen and phosphorus concentrations were measured and exports were calculated in the subtropical Richmond River catchment between July 1994 and June 1996. A stratified sampling approach was adopted owing to the extreme and rapid changes in riverine discharge, which varied by up to 10 000 times over the study period. Nutrient concentrations were lowest during baseflow. During storm discharge, dissolve inorganic and organic and particulate nitrogen and phosphorus concentrations increased two‐ to five fold, and followed hysteresis patterns that were attributed to the integration and/or depletion of catchment nutrient sources during an event. Dissolved organic nitrogen and particulate phosphorus were the dominant nutrient forms. Land use and antecedent conditions had a large influence on nutrient concentrations and exports. During the 1995–96 year (slightly above the mean annual discharge) 96% of nitrogen and 98% of phosphorus loads were transported in less than 6% of the time. When averaged across the catchment, monthly riverine nutrient loads varied by up to 1061‐fold during the study and exports were approximately four‐fold greater during the second year relative to the first. The subtropical Richmond River catchment has greater intra‐ and potential interannual variability in nutrient loads and exports when compared with temperate catchments from other parts of the world. It is suggested that in tropical and subtropical Australian catchments with large intra‐ and interannual variation in discharge, the need for parameterizing the antecedent conditions, such as the degree of nutrient storage, may make it difficult to model spatial and temporal (short time‐scale) nutrient exports. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Shallow and bedrock groundwater from granitic aquifers were investigated for the hydrogeochemistry of major and minor constituents in an agricultural area. Nitrate concentrations were observed up to 49 mg/l as NO3‐N, with 22% of samples exceeding the drinking water standard, which could pose a significant threat because most residents rely on groundwater as their drinking water source. Principal component analysis revealed three principal components (PCs): (1) nitrate contamination, contributed by major cations, Cl?, SO and NO , (2) reduction processes positively involving Fe, Mn and B, and negatively involving dissolved oxygen and NO and (3) natural mineralization, involving HCO and F?. Cluster analysis, performed on the PC scores, resulted in seven sample groups, which were successfully identified by total depth, elevation and land use. The nitrate‐contaminated groups had mixed land uses, with locally concentrated residential areas. Uncontaminated groundwater groups were found in the natural environment, including high‐altitude spring water and bedrock groundwater with a higher degree of natural mineralization. Shallow groundwater groups in paddy fields in lowlands were affected by reducing environments, of which one group was characterized by high Fe, Mn and B, and negligible nitrate. Groundwater with intermediate nitrate and lower Cl? and SO was found primarily in hilly terrains with orchards and vegetable gardens, indicating lower contaminant loadings than lowland areas. Higher concentrations of F? and nitrate were observed in the nitrate‐contaminated water, which seemed unlikely to be explained by groundwater mixing. The strong acidity generated from nitrification may infiltrate deeper into the aquifer, induce accelerated weathering of bedrock and result in the coexistence of F? and nitrate, which may be an evidence of intense nitrate loading, leading to soil acidification. Multivariate statistical analysis successfully delineated hydrochemical characteristics of groundwater attained by natural and anthropogenic processes in an agriculturally stressed area with complex topographic land use patterns. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Understanding the carbon cycle of the Han River system in Korea is of prime interest in managing and preserving this valuable water resource for more than 20 million residents in the area. As a part of a comprehensive carbon cycling study for the Han River system, this report focuses on the carbon isotope compositions of dissolved inorganic carbon (DIC) in its two major tributaries, the North and the South Han Rivers. The major difference in carbonate chemistry of the tributaries originates primarily from the lithology of the catchment areas. The South Han River, draining a carbonate‐dominant terrain, has much higher alkalinities and DIC concentrations, whereas the lower concentrations in the North Han River indicate little influence of carbonate weathering. Likewise, δ13CDIC values in the South Han River indicate that the DIC input from the carbonate rocks is important in controlling carbon isotope ratios of DIC. For the North Han River, the oxidation of organic material influences the amount of riverine DIC and δ13CDIC values to a greater extent. Overall, remarkable seasonal and spatial variations of river chemistry and carbon isotope compositions of DIC reflect the variability in geo‐hydrologic characteristics, in the water regime, and in metabolic activities in the river water and/or the drainage areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Catchments with minimal disturbance usually have low dissolved inorganic nitrogen (DIN) export, but disturbances and anthropogenic inputs result in elevated DIN concentration and export and eutrophication of downstream ecosystems. We studied streams in the southern Appalachian Mountains, USA, an area dominated by hardwood deciduous forest but with areas of valley agriculture and increasing residential development. We collected weekly grab samples and storm samples from nine small catchments and three river sites. Most discharge occurred at baseflow, with baseflow indices ranging from 69% to 95%. We identified three seasonal patterns of baseflow DIN concentration. Streams in mostly forested catchments had low DIN with bimodal peaks, and summer peaks were greater than winter peaks. Streams with more agriculture and development also had bimodal peaks; however, winter peaks were the highest. In streams draining catchments with more residential development, DIN concentration had a single peak, greatest in winter and lowest in summer. Three methods for estimating DIN export produced consistent results. Annual DIN export ranged from less than 200 g ha?1 year?1 for the less disturbed catchments to over 2,000 g ha?1 year?1 in the catchments with the least forest area. Land cover was a strong predictor of DIN concentration but less significant for predicting DIN export. The two forested reference catchments appeared supply limited, the most residential catchment appeared transport limited, and export for the other catchments was significantly related to discharge. In all streams, baseflow DIN export exceeded stormflow export. Morphological and climatological variation among watersheds created complexities unexplainable by land cover. Nevertheless, regression models developed using land cover data from the small catchments reasonably predicted concentration and export for receiving rivers. Our results illustrate the complexity of mechanisms involved in DIN export in a region with a mosaic of climate, geology, topography, soils, vegetation, and past and present land use.  相似文献   

17.
为了揭示湖滨带土地利用与覆被改变对土壤有机碳库及生态功能的影响,本文选取了巢湖湖滨带(北岸)9个典型样方,分析和比较了表层(0~30 cm)土壤有机碳组分特征以及相关酶的活性.结果表明,巢湖湖滨带不同采样点土壤总有机碳(TOC)含量变化范围为2.88~11.2 g/kg,平均含量为9.12 g/kg,其中原生芦苇(Phragmites australis)湿地土壤TOC含量最高(11.2 g/kg),而芦苇群落消失后形成的荒滩土壤TOC含量最低,仅为2.88 g/kg.表征湖滨带湿地缓冲性能的土壤阳离子交换量(CEC)也以原生芦苇湿地土壤为最高,并与TOC含量呈现明显正相关.湖滨带表层土壤溶解性有机碳(DOC)和易氧化有机碳(EOC)含量变化范围分别为150~370 mg/kg和1.7~5.2 g/kg,其变化幅度明显高于TOC,其中DOC含量各采样点差异最为显著.除多酚氧化酶外,次生水柳林(Homonoia riparia Lour.)表层土壤几种酶的活性较原生芦苇湿地土壤皆有所上升,特别是蔗糖酶活性增加幅度最为明显.受人类活动干扰较大的湖滨绿地公园和人工草滩土壤过氧化氢酶、脲酶和蔗糖酶酶活性普遍显著低于原生芦苇湿地.除多酚氧化酶外,土壤中几种酶活性与土壤有机碳组分EOC和DOC含量均呈现显著的正相关,其中蔗糖酶活性与DOC含量之间相关系数最高(r=0.907),其相关性均达到极显著水平.土壤溶解性有机碳和蔗糖酶可以作为表征因土地利用与覆被变化导致湖滨带湿地退化以及生态恢复效果的敏感性指标.  相似文献   

18.
亚热带河口区水库DOC和DIC浓度时空变化特征   总被引:1,自引:0,他引:1  
杨平  唐晨  陆苗慧  张林海  Yang Hong  仝川  吕敏 《湖泊科学》2021,33(4):1123-1137
沿海水库汇聚并埋藏着大量的碳,是全球碳循环的重要区域.水体溶解有机碳(DOC)和溶解无机碳(DIC)的生物地球化学行为是水库碳循环研究的重要组成部分,对其系统生物过程和生态环境变化具有重要的影响.为了解亚热带河口区文武砂水库表层水体DOC和DIC的时空分布特征,本研究于2018年11月、2019年3月和6月分别对库区表...  相似文献   

19.
Dissolved organic carbon (DOC) was measured at hourly or two-hourly intervals during more than 30 events in one forested and two moorland subcatchments of the Loch Fleet catchment in southwest Scotland. The dominantly peaty soils in the catchments resulted in small discharge-related DOC variations within individual events, with a maximum range of about 2 mg 1?1. Seasonal variations were larger with an amplitude of 8-9 mg 1?1 and maximum concentrations in the summer months. The forested stream had the highest mean DOC, twice as large as the comparable moorland stream in the preliming phase. Applications of lime to the catchments increased stream DOC concentrations, with the largest increases in the moorland catchments.  相似文献   

20.
We identify and assess the relative importance of the principal factors influencing the release of dissolved organic carbon (DOC) and dissolved forms of nitrogen (N) from a small upland headwater dominated by podzolic soils during a sequence of autumn runoff events. We achieve this by subjecting high‐resolution hydrometeorological and hydrochemical data to an R‐mode principal component factor analysis and a stepwise multivariate regression analysis. We find that the release of DOC and N is influenced by four principal factors, namely event magnitude, soil water flow through the Bs horizon, the length of time since the soil profile was last flushed, and rewetting of the H horizon. The release of DOC and dissolved organic nitrogen (DON) is most strongly influenced by the combination of event magnitude and soil water flow through the Bs horizon, and to a lesser extent by the length of time since the soil profile was last flushed. Rewetting of the H horizon also influences the release of DOC, but this is not the case for DON. The release of nitrate (NO3‐N) is most strongly influenced by the combination of the length of time since the soil profile was last flushed and rewetting of the H horizon, and to a lesser extent by event magnitude. Soil water flow through the Bs horizon does not influence the release of NO3‐N. We argue that the mechanisms by which the above factors influence the release of DOC and N are probably strongly associated with moisture‐dependent biological activity, which governs the turnover of organic matter in the soil and limits the availability of NO3‐N in the soil for leaching. We conclude that the release of DOC and N from upland headwaters dominated by podzolic soils is largely controlled by the variable interaction of hydrometeorological factors and moisture‐dependent biological processes, and that a shift in climate towards drier summers and wetter winters may result in the release of DOC and N becoming increasingly variable and more episodic in the future. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号