首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Xunhong Chen 《水文研究》2011,25(2):278-287
Characterization of streambed hydraulic conductivity from the channel surface to a great depth below the channel surface can provide needed information for the determination of stream‐aquifer hydrologic connectedness, and it is also important to river restoration. However, knowledge on the streambed hydraulic conductivity for sediments 1 m below the channel surface is scarce. This study describes a method that was used to determine the distribution patterns of streambed hydraulic conductivity for sediments from channel surface to a depth of 15 m below. The method includes Geoprobe's direct‐push techniques and Permeameter tests. Direct‐push techniques were used to generate the electrical conductivity (EC) logs and to collect sequences of continuous sediment cores from river channels, as well as from the alluvial aquifer connected to the river. Permeameter tests on these sediment cores give the profiles of vertical hydraulic conductivity (Kv) of the channel sediments and the aquifer materials. This method was applied to produce Kv profiles for a streambed and an alluvial aquifer in the Platte River Valley of Nebraska, USA. Comparison and statistical analysis of the Kv profiles from the river channel and from the proximate alluvial aquifer indicates a special pattern of Kv in the channel sediments. This depth‐dependent pattern of Kv distribution for the channel sediments is considered to be produced by hyporheic processes. This Kv‐distribution pattern implied that the effect of hyporheic processes on streambed hydraulic conductivity can reach the sediments about 9 m below the channel surface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Management of water resources in alluvial aquifers relies mainly on understanding interactions between hydraulically connected streams and aquifers. Numerical models that simulate this interaction often are used as decision support tools for water resource management. However, the accuracy of numerical predictions relies heavily on unknown system parameters (e.g., streambed conductivity and aquifer hydraulic conductivity), which are spatially heterogeneous and difficult to measure directly. This paper employs an ensemble smoother to invert groundwater level measurements to jointly estimate spatially varying streambed and alluvial aquifer hydraulic conductivity along a 35.6‐km segment of the South Platte River in Northeastern Colorado. The accuracy of the inversion procedure is evaluated using a synthetic experiment and historical groundwater level measurements, with the latter constituting the novelty of this study in the inversion and validation of high‐resolution fields of streambed and aquifer conductivities. Results show that the estimated streambed conductivity field and aquifer conductivity field produce an acceptable agreement between observed and simulated groundwater levels and stream flow rates. The estimated parameter fields are also used to simulate the spatially varying flow exchange between the alluvial aquifer and the stream, which exhibits high spatial variability along the river reach with a maximum average monthly aquifer gain of about 2.3 m3/day and a maximum average monthly aquifer loss of 2.8 m3/day, per unit area of streambed (m2). These results demonstrate that data assimilation inversion provides a reliable and computationally affordable tool to estimate the spatial variability of streambed and aquifer conductivities at high resolution in real‐world systems.  相似文献   

4.
Disconnected Surface Water and Groundwater: From Theory to Practice   总被引:1,自引:0,他引:1  
When describing the hydraulic relationship between rivers and aquifers, the term disconnected is frequently misunderstood or used in an incorrect way. The problem is compounded by the fact that there is no definitive literature on the topic of disconnected surface water and groundwater. We aim at closing this gap and begin the discussion with a short introduction to the historical background of the terminology. Even though a conceptual illustration of a disconnected system was published by Meinzer (1923) , it is only within the last few years that the underlying physics of the disconnection process has been described. The importance of disconnected systems, however, is not widely appreciated. Although rarely explicitly stated, many approaches for predicting the impacts of groundwater development on surface water resources assume full connection. Furthermore, management policies often suggest that surface water and groundwater should only be managed jointly if they are connected. However, although lowering the water table beneath a disconnected section of a river will not change the infiltration rate at that point, it can increase the length of stream that is disconnected. Because knowing the state of connection is of fundamental importance for sustainable water management, robust field methods that allow the identification of the state of connection are required. Currently, disconnection is identified by showing that the infiltration rate from a stream to an underlying aquifer is independent of the water table position or by identifying an unsaturated zone under the stream. More field studies are required to develop better methods for the identification of disconnection and to quantify the implications of heterogeneity and clogging processes in the streambed on disconnection.  相似文献   

5.
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow‐through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream‐aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow‐through streams.  相似文献   

6.
Xi Chen  Xunhong Chen   《Journal of Hydrology》2003,280(1-4):246-264
During a flood period, stream-stage increases induce infiltration of stream water into an aquifer; subsequent declines in stream stage cause a reverse motion of the infiltrated water. This paper presents the results of the water exchange rate between a stream and aquifer, the storage volume of the infiltrated stream water in the surrounding aquifer (bank storage), and the storage zone. The storage zone is the part of aquifer where groundwater is replaced by stream water during the flood. MODFLOW was used to simulate stream–aquifer interactions and to quantify rates of stream infiltration and return flow. MODPATH was used to trace the pathlines of the infiltrated stream water and to determine the size of the storage zone. Simulations were focused on the analyses of the effects of the stream-stage fluctuation, aquifer properties, the hydraulic conductivity of streambed sediments, regional hydraulic gradients, and recharge and evapotranspiration (ET) rates on stream–aquifer interactions. Generally, for a given stream–aquifer system, larger flow rates result from larger stream-stage fluctuations; larger storage volumes and storage zones are produced by larger and longer-lasting fluctuations. For a given stream-stage hydrograph, a lower-permeable streambed, an aquitard, or an anisotropic aquifer of low vertical hydraulic conductivity can significantly reduce the rate of infiltration and limit the size of the storage zone. The bank storage solely caused by the stage fluctuation differs slightly between gaining and losing streams. Short-term rainfall recharge and ET loss in the shallow groundwater slightly influence on the flow rate, but their effects on bank storage in a larger area for a longer period can be considerable.  相似文献   

7.
Seepage meters modified for use in flowing water were used to directly measure rates of exchange between surface and subsurface water in a gravel‐ and cobble bed river in western Pennsylvania, USA (Allegheny River, Qmean = 190 m3/s) and a sand‐ and gravel‐bed river in Colorado, USA (South Platte River, Qmean = 9·7 m3/s). Study reaches at the Allegheny River were located downstream from a dam. The bed was stable with moss, algae, and river grass present in many locations. Median seepage was + 0·28 m/d and seepage was highly variable among measurement locations. Upward and downward seepage greatly exceeded the median seepage rate, ranging from + 2·26 (upward) to ? 3·76 (downward) m/d. At the South Platte River site, substantial local‐scale bed topography as well as mobile bedforms resulted in spatial and temporal variability in seepage greatly in exceedence of the median groundwater discharge rate of 0·24 m/d. Both upward and downward seepage were recorded along every transect across the river with rates ranging from + 2·37 to ? 3·40 m/d. Despite a stable bed, which commonly facilitates clogging by fine‐grained or organic sediments, seepage rates at the Allegheny River were not reduced relative to those at the South Platte River. Seepage rate and direction depended primarily on measurement position relative to local‐ and meso‐scale bed topography at both rivers. Hydraulic gradients were small at nearly all seepage‐measurement locations and commonly were not a good indicator of seepage rate or direction. Therefore, measuring hydraulic gradient and hydraulic conductivity at in‐stream piezometers may be misleading if used to determine seepage flux across the sediment‐water interface. Such a method assumes that flow between the well screen and sediment‐water interface is vertical, which appears to be a poor assumption in coarse‐grained hyporheic settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The need to identify groundwater seepage locations is of great importance for managing both stream water quality and groundwater sourced ecosystems due to their dependency on groundwater‐borne nutrients and temperatures. Although several reconnaissance methods using temperature as tracer exist, these are subjected to limitations related to mainly the spatial and temporal resolution and/or mixing of groundwater and surface water leading to dilution of the temperature differences. Further, some methods, for example, thermal imagery and fiber optic distributed temperature sensing, although relative efficient in detecting temperature differences over larger distances, these are labor‐intensive and costly. Therefore, there is a need for additional cost‐effective methods identifying substantial groundwater seepage locations. We present a method expanding the linear regression of air and stream temperatures by measuring the temperatures in dual‐depth; in the stream column and at the streambed‐water interface (SWI). By doing so, we apply metrics from linear regression analysis of temperatures between air/stream and air/SWI (linear regression slope, intercept, and coefficient of determination), and the daily water temperature cycle (daily mean temperatures, temperature variance, and the mean diel temperature fluctuation). We show that using metrics from only single‐depth stream temperature measurements are insufficient to identify substantial groundwater seepage locations in a head‐water stream. Conversely, comparing the metrics from dual‐depth temperatures show significant differences; at groundwater seepage locations, temperatures at the SWI merely explain 43–75% of the variation opposed to ? 91% at the corresponding stream column temperatures. In general, at these locations at the SWI, the slopes ( < 0.25) and intercepts ( > 6.5 °C) are substantially lower and higher, respectively, while the mean diel temperature fluctuations ( < 0.98 °C) are decreased compared to remaining locations. The dual‐depth approach was applied in a post‐glacial fluvial setting, where metrics analyses overall corroborated with field measurements of groundwater fluxes and stream flow accretions. Thus, we propose a method reliably identifying groundwater seepage locations along streambeds in such settings.  相似文献   

9.
Streambed hydraulic conductivity is one of the main factors controlling variability in surface water‐groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were therefore determined from in‐stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in‐stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater‐dominated stream. Seasonal small‐scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed across the stream than along the stream channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Preferential groundwater discharge features along stream corridors are ecologically important at local and stream network scales, yet we lack quantification of the multiscale controls on the spatial patterning of groundwater discharge. Here we identify physical attributes that best explain variation in the presence and lateral extent of preferential groundwater discharges along two 5th order streams, the Housatonic and Farmington Rivers, and 32 1st to 4th order reaches across the Farmington River network. We mapped locations of preferential groundwater discharge exposed along streambanks using handheld thermal infrared cameras paired with high-resolution topographic and land use land cover datasets, surficial soil characteristic maps, and depth-to-bedrock geophysical measurements. The unconfined Housatonic River, MA, USA (12 km) had fewer discharge locations and less lateral extent (41 discharge locations with 38 m of active discharge/km of river) compared to the partially confined Farmington River, CT, USA (26 km; 169 discharge locations with 129 m of active discharge/km of river). Using a moving window analysis, we found along both rivers that discharge was more likely to occur where bank slopes were steeper, floodplain extent was narrower, and degree of confinement was higher. Along the Farmington River, groundwater discharge was more likely to occur where saturated hydraulic conductivity was higher and depth-to-bedrock was shallower. Among the 32 stream reaches surveyed (33.2 km of total stream length) within the Farmington River watershed, preferential discharge was observed in all but two stream reaches, varied from 0 to 25% of lateral extent along stream banks (mean = 6%), and was more likely to occur where stream reach slopes were steep, saturated hydraulic conductivity was high, and watershed urbanization was low. Our results show that, though both surface (e.g., topographic, land use land cover) and subsurface (e.g., soil characteristics, bedrock depth) factors control the prevalence of streambank preferential groundwater discharge, the dominant controls vary across valley settings and stream sizes.  相似文献   

11.
Traditionally a streambed is treated as a layer of uniform thickness and low saturated hydraulic conductivity (K) in surface‐ and ground‐water studies. Recent findings have shown a high level of spatial heterogeneity within a streambed and such heterogeneity directly affects surface‐ and ground‐water exchange and can have ecological implications for biogeochemical transformations, nutrient cycling, organic matter decomposition, and reproduction of gravel spawning fish. In this study a detailed field investigation of K was conducted in two selected sites in Touchet River, a typical salmon spawning stream in arid south eastern Washington, USA. In‐stream slug tests were conducted to determine K following the Bouwer and Rice method. For the upper and lower sites, each 50 m long and 9 m wide and roughly 20 m apart, a sampling grid of 5 m longitudinally and 3 m transversely was used. The slug tests were performed for each horizontal coordinate at 0·3–0·45, 0·6–0·75, 0·9–1·05 and 1·2–1·35 m depth intervals unless a shallower impenetrable obstruction was encountered. Additionally, water levels were measured to obtain vertical hydraulic gradient (VHG) between each two adjacent depth intervals. Results indicated that K ranged over three orders of magnitude at both the upper and lower sites and differed between the two sites. At the upper site, K did not differ significantly among different depth intervals based on nonparametric statistical tests for mean, median, and empirical cumulative distribution, but the spatial pattern of K varied among different depth intervals. At the lower site, K for the 0·3–0·45 m depth interval differed statistically from those at other depth intervals, and no similar spatial pattern was found among different depth intervals. Zones of upward and downward water flow based on VHG also varied among different depth intervals, reflecting the complexities of the water flow regime. Detailed characterization of the streambed as attempted in this study should be helpful in providing information on spatial variations of streambed hydraulic properties as well as surface‐ and ground‐water interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow‐front velocities in initially dry channels. The diffusion‐wave approximation to the Saint‐Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy‐bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self‐purging groundwater‐sampling device.  相似文献   

14.
This study investigated the influence of the regional flow on the streambed vertical hydraulic conductivity (Kv) within the hyporheic zone in three stream reaches of the Weihe River in July 2016. The streambed Kv with two connected depths was investigated at each test reach. Based on the sediment characteristics, the three test reaches could be divided into three categories: a sandy streambed without continuous silt and clay layer, a sandy streambed with continuous silt and clay layer, and a silt–clay streambed. The results demonstrate that the streambed Kv mainly decreases with the depth at the sandy streambed (without continuous silt and clay layer) and increases with the depth at the other two test reaches. At the sandy streambed (with continuous silt and clay layer) where streambed Kv mainly decreases with the depth, the regional upward flux can suspend fine particles and enhance the pore spacing, resulting in the elevated Kv in the upper sediment layers. At another sandy streambed, the continuous silt and clay layer is the main factor that influences the vertical distribution of fine particles and streambed Kv. An increase in streambed Kv with the depth at the silt/clay streambed is attributed to the regional downward movement of water within the sediments that may lead to more fine particles deposited in the pores in the upper sediment layers. The streambed Kv is very close to the bank in the sandy streambed without continuous silt and clay layer and the channel centre in the other two test reaches. Differences in grain size distribution of the sediments at each test reach exercise a strong controlling influence on the streambed Kv. This study promotes the understanding of dynamics influencing the interactions between groundwater and surface water and provides guidelines to scientific water resources management for rivers.  相似文献   

15.
In the present study, groundwater seepage to an alluvial stream and two tributary streams was examined at nine field sites using hydrological, geophysical, and geomorphological observations. The data indicate that seepage enters the streams in the following ways: (i) directly through the streambed; (ii) as nearly superficial flow from diffuse discharge areas on the flood plains or; (iii) as a combination of (i) and (ii). At about 40% of the sites more than 50% of seepage flows through the streambed. Moreover, it was found that the ratio C, defined as the width of the wet zone of the flood plain divided by the effective width of the stream, can be used as an indicator of the percentage of water entering the stream directly through the streambed. When C is small streambed seepage is large, while when C is large streambed seepage is small and ground water enters the stream mainly as nearly superficial or over-bank flow from the wet zone.  相似文献   

16.
Interactions of surface water and groundwater (SW–GW) play an important role in the physical, chemical, and ecological processes of riparian zones. The main objective of this study was to describe the two‐dimensional characteristics of riverbank SW–GW interactions and to quantify their influence factors. The SW–GW exchange fluxes for six sections (S1 to S6) of the Qinhuai River, China, were estimated using a heat tracing method, and field hydrogeological and thermodynamic parameters were obtained via inverse modelling. Global sensitivity analysis was performed to compare the effects of layered heterogeneity of hydraulic conductivity and river stage variation on SW–GW exchange. Under the condition of varied river stage, only the lateral exchange fluxes at S1 apparently decreased during the monitoring period, probably resulting from its relatively higher hydraulic conductivity. Meanwhile, the SW–GW exchanges for the other five sections were quite stable over time. The lateral exchange fluxes were higher than the vertical ones. The riverbank groundwater flow showed different spatial variation characteristics for the six sections, but most of the higher exchange fluxes occurred in the lower area of a section. The section with larger hydraulic conductivity has an apparent dynamic response to surface water and groundwater level differences, whereas lower permeabilities severely reduced the response of groundwater flow. The influence of boundary conditions on SW–GW interactions was restricted to a limited extent, and the impact extent will expand with the increase of peak water level and hydraulic conductivity. The SW–GW head difference was the main influence factors in SW–GW interactions, and the influence of both SW–GW head difference and hydraulic conductivity decreased with an increase of the distance from the surface water boundary. For each layer of riverbank sediment, its hydraulic conductivity had greater influence on its groundwater flow than the other layers, whereas it had negligible effects on its overlying/underlying layers. Consequently, the variations in river stage and hydraulic conductivity were the main factors influencing the spatial and temporal characteristics of riverbank groundwater flow, respectively.  相似文献   

17.
Stream–aquifer interaction plays a vital role in the water cycle, and a proper study of this interaction is needed for understanding groundwater recharge, contaminants migration, and for managing surface water and groundwater resources. A model‐based investigation of a field experiment in a riparian zone of the Schwarzbach river, a tributary of the Rhine River in Germany, was conducted to understand stream–aquifer interaction under alternative gaining and losing streamflow conditions. An equivalent streambed permeability, estimated by inverting aquifer responses to flood waves, shows that streambed permeability increased during infiltration of stream water to aquifer and decreased during exfiltration. Aquifer permeability realizations generated by multiple‐point geostatistics exhibit a high degree of heterogeneity and anisotropy. A coupled surface water groundwater flow model was developed incorporating the time‐varying streambed permeability and heterogeneous aquifer permeability realizations. The model was able to reproduce varying pressure heads at two observation wells near the stream over a period of 55 days. A Monte Carlo analysis was also carried out to simulate groundwater flow, its age distribution, and the release of a hypothetical wastewater plume into the aquifer from the stream. Results of this uncertainty analysis suggest (a) stream–aquifer exchange flux during the infiltration periods was constrained by aquifer permeability; (b) during exfiltration, this flux was constrained by the reduced streambed permeability; (c) the effect of temporally variable streambed permeability and aquifer heterogeneity were found important to improve the accurate capture of the uncertainty; and (d) probabilistic infiltration paths in the aquifer reveal that such pathways and the associated prediction of the extent of the contaminant plume are highly dependent on aquifer heterogeneity.  相似文献   

18.
Seepage rate and direction measured with a seepage metre modified for use in flowing water were greatly variable along a 300‐m reach of a shallow, gravel‐bed river and depended primarily on the local‐scale bed topography. The median value of seepage measured at 24 locations was 24 cm/day, but seepage measured at specific sites ranged from ?340 to +237 cm/day. Seepage also varied substantially over periods of hours to days and occasionally reversed direction in response to evolution of the sediment bed. Vertical hydraulic conductivity was related to seepage direction and was larger during upward seepage than during downward seepage; with differences ranging from 4 to 40% in areas of active sediment transport to more than an order of magnitude in areas where current was too slow to mobilize bed sediment. Seepage was poorly related to hydraulic gradient measured over vertical distances of 0·3 m and appeared to be opposite the hydraulic gradient at 18% of the locations where both parameters were measured. Results demonstrate the scale dependence of these measurements in coarse‐grained hyporheic settings and indicate that hydraulic gradients should be determined over a much shorter vertical increment if used to indicate exchange across the sediment–water interface. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
There are many field techniques used to quantify rates of hyporheic exchange, which can vary in magnitude and direction spatially over distances of only a few metres, both within and between morphological features. We used in‐stream mini‐piezometers and heat transport modelling of stream and streambed temperatures to quantify the rates and directions of water flux across the streambed interface upstream and downstream of three types of in‐stream geomorphic features: a permanent dam, a beaver dam remnant and a stream meander. We derived hyporheic flux estimates at three different depths at six different sites for a month and then paired those flux rates with measurements of gradient to derive hydraulic conductivity (K) of the streambed sediments. Heat transport modelling provided consistent daily flux estimates that were in agreement directionally with hydraulic gradient measurements and also identified vertical heterogeneities in hydraulic conductivity that led to variable hyporheic exchange. Streambed K varied over an order of magnitude (1·9 × 10?6 to 5·7 × 10?5 m/s). Average rates of hyporheic flux ranged from static (q < ±0·02 m/day) to 0·42 m/day. Heat transport modelling results suggest three kinds of flow around the dams and the meander. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Developing an appropriate data collection scheme to infer stream–subsurface interactions is not trivial due to the spatial and temporal variability of exchange flowpaths. Within the context of a case study, this paper presents the results from a number of common data collection techniques ranging from point to reach scales used in combination to better understand the spatial complexity of subsurface exchanges, infer the hydrologic conditions where individual influences of hyporheic and groundwater exchange components on stream water can be characterized, and determine where gaps in information arise. We start with a tracer‐based, longitudinal channel water balance to quantify hydrologic gains and losses at a sub‐reach scale nested within two consecutive reaches. Next, we look at groundwater and stream water surface levels, shallow streambed vertical head gradients, streambed and aquifer hydraulic conductivities, water chemistry, and vertical flux rates estimated from streambed temperatures to provide more spatially explicit information. As a result, a clearer spatial understanding of gains and losses was provided, but some limitations in interpreting results were identified even when combining information collected over various scales. Due to spatial variability of exchanges and areas of mixing, each technique frequently captured a combination of groundwater and hyporheic exchange components. Ultimately, this study provides information regarding technique selection, emphasizes that care must be taken when interpreting results, and identifies the need to apply or develop more advanced methods for understanding subsurface exchanges. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号