首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Output generated by hydrologic simulation models is traditionally calibrated and validated using split‐samples of observed time series of total water flow, measured at the drainage outlet of the river basin. Although this approach might yield an optimal set of model parameters, capable of reproducing the total flow, it has been observed that the flow components making up the total flow are often poorly reproduced. Previous research suggests that notwithstanding the underlying physical processes are often poorly mimicked through calibration of a set of parameters hydrologic models most of the time acceptably estimates the total flow. The objective of this study was to calibrate and validate a computer‐based hydrologic model with respect to the total and slow flow. The quick flow component used in this study was taken as the difference between the total and slow flow. Model calibrations were pursued on the basis of comparing the simulated output with the observed total and slow flow using qualitative (graphical) assessments and quantitative (statistical) indicators. The study was conducted using the Soil and Water Assessment Tool (SWAT) model and a 10‐year historical record (1986–1995) of the daily flow components of the Grote Nete River basin (Belgium). The data of the period 1986–1989 were used for model calibration and data of the period 1990–1995 for model validation. The predicted daily average total flow matched the observed values with a Nash–Sutcliff coefficient of 0·67 during calibration and 0·66 during validation. The Nash–Sutcliff coefficient for slow flow was 0·72 during calibration and 0·61 during validation. Analysis of high and low flows indicated that the model is unbiased. A sensitivity analysis revealed that for the modelling of the daily total flow, accurate estimation of all 10 calibration parameters in the SWAT model is justified, while for the slow flow processes only 4 out of the set of 10 parameters were identified as most sensitive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Conceptual rainfall–runoff models are a valuable tool for predictions in ungauged catchments. However, most of them rely on calibration to determine parameter values. Improving the representation of runoff processes in models is an attractive alternative to calibration. Such an approach requires a straightforward, a priori parameter allocation procedure applicable on a wide range of spatial scales. However, such a procedure has not been developed yet. In this paper, we introduce a process‐based runoff generation module (RGM‐PRO) as a spin‐off of the traditional runoff generation module of the PREVAH hydrological modelling system. RGM‐PRO is able to exploit information from maps of runoff types, which are developed on the basis of field investigations and expert knowledge. It is grid based, and within each grid cell, the process heterogeneity is considered to avoid information loss due to grid resolution. The new module is event based, and initial conditions are assimilated and downscaled from continuous simulations of PREVAH, which are also available for real‐time applications. Four parameter allocation strategies were developed, on the basis of the results of sprinkling experiments on 60‐m2 hillslope plots at several grassland locations in Switzerland, and were tested on five catchments on the Swiss Plateau and Prealps. For the same catchments, simulation results obtained with the best parameter allocation strategy were compared with those obtained with different configurations of the traditional runoff generation module of PREVAH, which was also applied as an event‐based module here. These configurations include a version that avoids calibration, one that transfers calibrated parameters, and one that uses regionalised parameter values. RGM‐PRO simulated heavy events in a more realistic way than the uncalibrated traditional runoff generation module of PREVAH, and, in some instances, it even exceeded the performance of the calibrated traditional one. The use of information on the spatial distribution of runoff types additionally proved to be valuable as a regionalisation technique and showed advantages over the other regionalisation approaches, also in terms of robustness and transferability.  相似文献   

3.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   

4.
The paper presents the development of a lumped conceptual rainfall‐runoff model [Transformation of rainfall to runoff, Variability across timescales and Model parsimonization (TVM)] and a series of tests on various levels of model structure at different time resolutions. It is applied to the Bradford catchment in the United Kingdom. The TVM model is developed with a flexible structure through various relationships in each module that can be modified depending on the study catchments. Adopting the downward approach, parsimonious models are developed to examine at what level of complexity the model is able to capture runoff variability. The approach aims to compromise between parsimonious and complex alternatives in model development. This study shows that model structure requires data at different aggregation levels of timescales depending on its complexity. It reveals that the absence of the infiltration excess strongly affected all models. The analysis shows that the time resolution of hourly downwards must be used for the study catchment. The investigation of model complexity indicates that the combination of the most complicated model structure and timescale of quarter‐hourly is adequate to capture the catchment runoff characteristics. The downward approach in the TVM model helps to gain a deeper understanding of water balance and runoff process in the study catchment. The approach could be applicable to other catchments to obtain parsimonious models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling tool for simulating the time‐dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in‐stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in‐stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l?1. The general trends in the in‐stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l?1) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in‐stream generation, storage and release of the fine sediment fraction. The in‐stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
We examine the value of additional information in multiple objective calibration in terms of model performance and parameter uncertainty. We calibrate and validate a semi‐distributed conceptual catchment model for two 11‐year periods in 320 Austrian catchments and test three approaches of parameter calibration: (a) traditional single objective calibration (SINGLE) on daily runoff; (b) multiple objective calibration (MULTI) using daily runoff and snow cover data; (c) multiple objective calibration (APRIORI) that incorporates an a priori expert guess about the parameter distribution as additional information to runoff and snow cover data. Results indicate that the MULTI approach performs slightly poorer than the SINGLE approach in terms of runoff simulations, but significantly better in terms of snow cover simulations. The APRIORI approach is essentially as good as the SINGLE approach in terms of runoff simulations but is slightly poorer than the MULTI approach in terms of snow cover simulations. An analysis of the parameter uncertainty indicates that the MULTI approach significantly decreases the uncertainty of the model parameters related to snow processes but does not decrease the uncertainty of other model parameters as compared to the SINGLE case. The APRIORI approach tends to decrease the uncertainty of all model parameters as compared to the SINGLE case. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
We compare two approaches to modelling floodplain inundation: a raster‐based approach, which uses a relatively simple process representation, with channel flows being resolved separately from the floodplain using either a kinematic or diffusive wave approximation, and a finite‐element hydraulic model aiming to solve the full two‐dimensional shallow‐water equations. A flood event on a short (c. 4 km) reach of the upper River Thames in the UK is simulated, the models being validated against inundation extent as determined from satellite synthetic aperture radar (SAR) imagery. The unconstrained friction parameters are found through a calibration procedure, where a measure of fit between predicted and observed shorelines is maximized. The raster and finite‐element models offer similar levels of performance, both classifying approximately 84% of the model domain correctly, compared with 65% for a simple planar prediction of water surface elevation. Further discrimination between models is not possible given the errors in the validation data. The simple raster‐based model is shown to have considerable advantages in terms of producing a straightforward calibration process, and being robust with respect to channel specification. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers. The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.  相似文献   

9.
In the present study, a semi‐distributed hydrological model soil and water assessment tool (SWAT) has been employed for the Ken basin of Central India to predict the water balance. The entire basin was divided into ten sub basins comprising 107 hydrological response units on the basis of unique slope, soil and land cover classes using SWAT model. Sensitivity analysis of SWAT model was performed to examine the critical input variables of the study area. For Ken basin, curve number, available water capacity, soil depth, soil evaporation compensation factor and threshold depth of water in the shallow aquifer (GWQ_MN) were found to be the most sensitive parameters. Yearly and monthly calibration (1985–1996) and validation (1997–2009) were performed using the observed discharge data of the Banda site in the Ken basin. Performance evaluation of the model was carried out using coefficient of determination, Nash–Sutcliffe efficiency, root mean square error‐observations standard deviation ratio, percent bias and index of agreement criterion. It was found that SWAT model can be successfully applied for hydrological evaluation of the Ken basin, India. The water balance analysis was carried out to evaluate water balance of the Ken basin for 25 years (1985–2009). The water balance exhibited that the average annual rainfall in the Ken basin is about 1132 mm. In this, about 23% flows out as surface run‐off, 4% as groundwater flow and about 73% as evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Most Latin American glaciers are located in the tropical Andes. The melting processes of Glacier “15” on Antisana volcano were studied to understand the relationship between glacier retreat and natural climate variability and global climate change. Glaciers on the Antisana volcano are crucial sources of water as they feed the headwater rivers that supply Quito with potable water. The aim of this study was to build empirical models based on multiple correlations to reconstruct the mass loss of glaciers over a period of 10 years at three scales: local (data recorded by meteorological stations located around the volcano), regional (data from stations located around the country) and global (re-analysis data). Data quality was checked using graphical and statistical methods. Several empirical models based on multiple correlations were created to generate longer time series (42 and 115 years) of the mass balance for the glacier ablation zone. The long mass balance series were compared with the temperature variation series of the Earth’s surface in the Southern Hemisphere to estimate the relation between the mass balance and global warming. Our results suggest that the meteorological factors that best correlate with mass balance are temperature and wind.
Editor D. Koutsoyiannis  相似文献   

11.
A long-term salt balance model is coupled with the small catchment water balance model presented in Part 1 of this series of papers. The salt balance model was designed as a simple robust, conceptually based model of the fundamental salt fluxes and stores in forested and cleared catchments. The model has four interdependent stores representing salt storage in the unsaturated zone, the deep permanent saturated groundwater system, the near-stream perched groundwater system and in a ‘salt bulge’ just above the permanent water-table. The model has performed well in simulations carried out on Salmon and Wights, two small experimental catchments in south-west Western Australia. When applied to Wights catchment the salt balance model was able to predict the stream salinities prior to clearing of native forests, and the increased salinities after the clearing.  相似文献   

12.
We apply the process‐based, distributed TOPKAPI‐ETH glacio‐hydrological model to a glacierized catchment (19% glacierized) in the semiarid Andes of central Chile. The semiarid Andes provides vital freshwater resources to valleys in Chile and Argentina, but only few glacio‐hydrological modelling studies have been conducted, and its dominant hydrological processes remain poorly understood. The catchment contains two debris‐free glaciers reaching down to 3900 m asl (Bello and Yeso glaciers) and one debris‐covered avalanche‐fed glacier reaching to 3200 m asl (Piramide Glacier). Our main objective is to compare the mass balance and runoff contributions of both glacier types under current climatic conditions. We use a unique dataset of field measurements collected over two ablation seasons combined with the distributed TOPKAPI‐ETH model that includes physically oriented parameterizations of snow and ice ablation, gravitational distribution of snow, snow albedo evolution and the ablation of debris‐covered ice. Model outputs indicate that while the mass balance of Bello and Yeso glaciers is mostly explained by temperature gradients, the Piramide Glacier mass balance is governed by debris thickness and avalanches and has a clear non‐linear profile with elevation as a result. Despite the thermal insulation effect of the debris cover, the mass balance and contribution to runoff from debris‐free and debris‐covered glaciers are similar in magnitude, mainly because of elevation differences. However, runoff contributions are distinct in time and seasonality with ice melt starting approximately four weeks earlier from the debris‐covered glacier, what is of relevance for water resources management. At the catchment scale, snowmelt is the dominant contributor to runoff during both years. However, during the driest year of our simulations, ice melt contributes 42 ± 8% and 67 ± 6% of the annual and summer runoff, respectively. Sensitivity analyses show that runoff is most sensitive to temperature and precipitation gradients, melt factors and debris cover thickness. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The emergence of regional and global satellite‐based rainfall products with high spatial and temporal resolution has opened up new large‐scale hydrological applications in data‐sparse or ungauged catchments. Particularly, distributed hydrological models can benefit from the good spatial coverage and distributed nature of satellite‐based rainfall estimates (SRFE). In this study, five SRFEs with temporal resolution of 24 h and spatial resolution between 8 and 27 km have been evaluated through their predictive capability in a distributed hydrological model of the Senegal River basin in West Africa. The main advantage of this evaluation methodology is the integration of the rainfall model input in time and space when evaluated at the sub‐catchment scale. An initial data analysis revealed significant biases in the SRFE products and large variations in rainfall amounts between SRFEs, although the spatial patterns were similar. The results showed that the Climate Prediction Center/Famine Early Warning System (CPC‐FEWS) and cold cloud duration (CCD) products, which are partly based on rain gauge data and produced specifically for the African continent, performed better in the modelling context than the global SRFEs, Climate Prediction Center MORPHing technique (CMORPH), Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The best performing SRFE, CPC‐FEWS, produced good results with values of R2NS between 0·84 and 0·87 after bias correction and model recalibration. This was comparable to model simulations based on traditional rain gauge data. The study highlights the need for input specific calibration of hydrological models, since major differences were observed in model performances even when all SRFEs were scaled to the same mean rainfall amounts. This is mainly attributed to differences in temporal dynamics between products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In this study a simple modelling approach was applied to identify the need for spatial complexity in representing hydrological processes and their variability over different scales. A data set of 18 basins was used, ranging between 8 and 4011 km2 in area, located in the Nahe basin (Germany), with daily discharge values for over 30 years. Two different parsimoniously structured models were applied in lumped as well as in spatially distributed according to two distribution classifications: (1) a simple classification based on the lithology expressed in three permeability types and (2) a more complex classification based on seven dominating runoff production processes. The objective of the study was to compare the performances of the models on a local and on a regional scale as well as between the models with a view to identifying the accuracy in capturing the spatial variability of the rainfall‐runoff relationships. It was shown that the presence of a specific basin characteristic or process of the distribution classification was not related with higher model performance; only a larger basin size promoted higher model performance. The results of this study also indicated that the permeability generally contained more useful information on the spatial heterogeneity of the hydrological behaviour of the natural system than did a more detailed classification on dominating runoff generation processes. Although model performance was slightly lower for the model that used permeability as a distribution classification, consistency in its parameter values was found, which was lacking with the more complex distribution classification. The latter distribution classification had a higher flexibility to optimize towards the variability of the runoff, which resulted in higher performance, however, process representation was applied inconsistently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Y. Huang  X. Chen  Y. P. Li  G. H. Huang  T. Liu 《水文研究》2010,24(25):3718-3732
In this study, a fuzzy‐based simulation method (FBSM) is developed for modelling hydrological processes associated with vague information through coupling fuzzy vertex analysis technique with distributed hydrological model. The FBSM can handle uncertainties existed as fuzzy sets in the hydrological modelling systems, and solutions under an associated number of α‐cut levels can be generated by solving 2n deterministic models. The lower reach of the Tarim River Basin in China is selected as a study case for demonstrating applicability of the proposed method. The developed model is calibrated and validated against observed groundwater elevation for four wells during the period 2000–2001, and generally performed acceptable for model Nash–Sutcliffe coefficient (R2) and correlation coefficient (R). The R2 is approximately over 0·65 and the correlation coefficient is higher than 0·90. Based on the technique of fuzzy simulation, the uncertainties of two parameters (KH and LC) are reflected under different α‐cut levels. The results indicate that, under a lower degree of plausibility, the interval between the lower and upper bounds of the groundwater elevation is wider; conversely, a higher degree of plausibility would lead to a narrow interval. The main effect of KH is more significant than the effect of LC at most well sites. The proposed method is useful for studying hydrological processes within a system containing multiple factors with uncertainties and providing support for identifying proper water resources management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In a previous study a spatially distributed hydrological model, based on the MIKE SHE code, was constructed and validated for the 375 000 km2 Senegal River basin in West Africa. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time‐series of precipitation from 112 stations in the basin. The model was calibrated and validated based on river discharge data from nine stations in the basin for 11 years. Calibration and validation results suggested that the spatial resolution of the input data in parts of the area was not sufficient for a satisfactory evaluation of the modelling performance. The study further examined the spatial patterns in the model input and output, and it was found that particularly the spatial resolution of the precipitation input had a major impact on the model response. In an attempt to improve the model performance, this study examines a remotely sensed dryness index for its relationship to simulated soil moisture and evaporation for six days in the wet season 1990. The index is derived from observations of surface temperature and vegetation index as measured by the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor. The correlation results between the index and the simulation results are of mixed quality. A sensitivity analysis, conducted on both estimates, reveals significant uncertainties in both. The study suggests that the remotely sensed dryness index with its current use of NOAA AVHRR data does not offer information that leads to a better calibration or validation of the simulation model in a spatial sense. The method potentially may become more suitable with the use of the upcoming high‐resolution temporal Meteosat Second Generation data. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   

19.
The application of stationary parameters in conceptual hydrological models, even under changing boundary conditions, is a common yet unproven practice. This study investigates the impact of non‐stationary model parameters on model performance for different flow indices and time scales. Therefore, a Self‐Organizing Map based optimization approach, which links non‐stationary model parameters with climate indices, is presented and tested on seven meso‐scale catchments in northern Germany. The algorithm automatically groups sub‐periods with similar climate characteristics and allocates them to similar model parameter sets. The climate indices used for the classification of sub‐periods are based on (a) yearly means and (b) a moving average over the previous 61 days. Classification b supports the estimation of continuous non‐stationary parameters. The results show that (i) non‐stationary model parameters can improve the performance of hydrological models with an acceptable growth in parameter uncertainty; (ii) some model parameters are highly correlated to some climate indices; (iii) the model performance improves more for monthly means than yearly means; and (iv) in general low to medium flows improve more than high flows. It was further shown how the gained knowledge can be used to identify insufficiencies in the model structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A mass‐balance approach was used to estimate in‐stream processes related to inorganic nitrogen species (NH4+, NO2? and NO3?) in a large river characterized by highly variable hydrological conditions, the Garonne River (south‐west France). Studies were conducted in two consecutive reaches of 30 km located downstream of the Toulouse agglomeration (population 760 000, seventh order), impacted by modification of discharge regime and high nitrogen concentrations. The mass‐balance was calculated by two methods: the first is based on a variable residence time (VRT) simulated by a one‐dimensional (1‐D) hydraulic model; the second is a based on a calculation using constant residence time (CRT) evaluated according to hydrographic peaks. In the context of the study, removal of dissolved inorganic nitrogen (DIN) for a reach of 30 km is underestimated by 11% with the CRT method. In sub‐reaches, the discrepancy between the two methods led to a 50% overestimation of DIN removal in the upper reach (13 km) and a 43% underestimation in the lower reach (17 km) using the CRT method. The study highlights the importance of residence time determination when using modelling approaches in the assessment of whole stream processes in short‐duration mass‐balance for a large river under variable hydrological conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号