首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一个准确的地热潜力评价模型有助于降低开发风险和减少投入。基于GIS平台,文章通过量化地热分布与周围控制因素的空间关系,构建信息量模型对云南腾冲地热潜力区进行评价。应用的公开数据包括地震震中数据、断层分布、布格重力数据、Landsat7 ETM+影像、航磁数据和SRTM高程影像;分别转换为古登堡-李斯特"b"值图、到断层距离图、到主地堑距离图、地表温度图、磁异常图和水系分布图。在构建数学预测过程中,提出结合信息量值的因子分析法检验影响因子独立性问题,保证评价可靠性。指数分析和面积比分析结果表明,信息量模型能够很好地应用于地热潜力区评价。预测出尚未开发且面积较大的地热潜在区4处,分布于龙川江流域、南底河流域和怒江流域;统计出未开发地热田总面积为1835.6 km2,占整个研究区的6.72%。本研究可以为缺乏调查信息区域初步确定地热潜力区,降低经济风险。  相似文献   

2.
The distribution of oil and gas resources in the South China Sea and adjacent areas is closely related to the structural pattern that helped to define the controlling effect of deep processes on oil-bearing basins.Igneous rocks can record important information from deep processes.Deep structures such as faults,basin uplift and depression,Cenozoic basement and magnetic basement are all the results of energy exchange within the earth.The study of the relationship between igneous rocks and deep structures is of great significance for the study of the South China Sea.By using the minimum curvature potential field separation technique and the correlation analysis technique of gravitational and magnetic anomalies,the fusion of gravitational and magnetic data reflecting igneous rocks can be obtained,through which the igneous rocks with high susceptibility/high density or high susceptibility/low density can be identified.In this study area,igneous rocks do not develop in the Yinggehai basin,Qiongdongnan basin,Zengmu basin and Brunei-Sabah basin whilst igneous rocks with high susceptibility/high density or high susceptibility/low density are widely-developed in other basins.In undeveloped igneous areas,faults are also undeveloped the Cenozoic thickness is greater,the magnetic basement depth is greater and the Cenozoic thickness is highly positively correlated with the magnetic basement depth.In igneously developed regions,the distribution pattern of the Qiongtai block is mainly controlled by primary faults,while the distribution of the Zhongxisha block,Xunta block and Yongshu-Taiping block is mainly controlled by secondary faults,the Cenozoic thickness having a low correlation with the depth of the magnetic basement.  相似文献   

3.
Using enhanced land surface temperatures (LSTs) image retrieved from Landsat ETM+, this article shows that thermal information associated with faults have been detected. These anomalies may be provided by geothermal natural convection through faults and partially influence the ground surface thermal environment. The study area in southern segment of Longmen Mountains thrust belt of Western Sichuan Basin contains complex faults and folds with recent earthquake activity. In order to study the faults for future oil exploration, we use LST data retrieved from Landsat thermal infrared band to detect the thermal information associated with faults. The LSTs are enhanced by filtering out anthropogenic activity and influence land cover classes, and interpolating to contour map. The spatial patterns of the enhanced images revealed the spatial correspondence between the thermal information and the dip planes of faults when compared with the explanation profiles and geologic features obtained from the 3D-seismic geophysical data. The thermal-affected ranges calculated and the statistically significant of regression model also indicate the result that the thermal information located near the faults are consistent with the faults’ dip planes.  相似文献   

4.
利用长白山玄武岩区Landsat TM5遥感影像数据,对研究区地表温度场进行了解译。综合分析研究区地表温度场、温泉和地热井分布特征、布格重力场和磁场四个因子,采用判别分析方法建立并验证了判别函数,对研究区地热水异常分布进行了识别。采用分段均值法研究了区内7条主要断裂与地热水异常的关系。研究表明,研究区地热水异常主要分布在环长白山天池火山口区域,松江河—抚松县以及二道白河—松江镇一带的抚松盆地和松江盆区,仙人桥地区和长白县—十四道沟一带的长白盆地区;断裂带和地热水异常区的分布有较好的相关关系。北西向的断裂带对地热水异常区分布的影响程度均是南西侧高于北东侧,且在断裂带处存在地热水异常区域;北西西向的断裂带对北东侧地热水异常区分布的影响程度高于南西侧;北东向和近东西向的断裂带受长白山天池火山的影响,在近天池火山口的区域,均存在地热水异常区域。  相似文献   

5.
Gravity, magnetic, and seismic surveys were conducted across the Wasatch fault zone east of Springville, Utah, near the mouth of Hobble Creek Canyon. The geophysical data were acquired, processed, and interpreted to determine possible locations of larger [total offset greater than 6 ft (1.8 m)], shallow normal faults within the fault zone. Interpretations of the individual data sets were integrated to help eliminate spurious readings and to strengthen the interpretations. Visual methods of integration, along with computer modeling, were chosen for this study. Furthermore, the geophysical data were correlated and integrated with available trench data and surface data. In addition to verifying locations of known faults, the geophysical surveys detected numerous possible additional faults not previously mapped. Of particular interest is a newly discovered graben structure near the southern end of the site, where building of new homes has recently been proposed.

New structural information about fault densities and styles was also determined from the surveys. The fault concentration for this site is 1.3 faults/100 ft (30.5 m), or one fault per 77 ft (23.5 m). Interpreted antithetic faults at the Hobble Creek site account for 65% of the total, while synthetic faults account for 35% with respect to the main fault strand.

Information derived from this study should be useful during planning and development of areas within the Wasatch fault zone. The characteristics of subsurface deformation can be used to gain a better understanding of the potential for surface rupture at a given site. This is also useful in planning appropriate site development and remedial measures to help mitigate hazards associated with large-magnitude earthquakes.  相似文献   


6.
马鑫  付雷  李铁锋  闫晶  刘廷  王明国  邵炜 《现代地质》2021,35(1):209-219
喜马拉雅东构造结地区是现今地球上构造活动最强烈、地貌演化最快的地区之一,属于地中海—喜马拉雅地热带,水热活动强烈。基于喜马拉雅东构造结的地热地质背景,采用野外调查、水化学和稳定同位素测试分析等手段,初步分析嘉黎地区深部地下热水发育特征及成因模式。结果表明,该区域地下热水均来自大气降水或冰雪融水,补给高程位于4 500 m以上,推测补给区位于研究区西北部片麻岩山区;区内地下热水均为未成熟水,热水补给水源沿断裂循环至深部热储,随后受热对流上升至地表出露成温泉,热水上升至浅表部与冷水发生混合,冷热水最大混合比可达91%;采用二氧化硅温度计、阳离子温度计以及硅-焓模型估算出热储温度最高达380 ℃,热水在雅鲁藏布江结合带内循环深度达到6 900 m。研究区深部热源主要来自雅鲁藏布江结合带及附近深大断裂,地表热显示主要受控于结合带两侧的次级张扭性断裂。本研究初步揭示了喜马拉雅东构造结嘉黎地区地热成因模式,可为该区重大工程建设和高温热害防治提供指导。  相似文献   

7.
本文利用科学院地球物理研究所的绝对地磁图(1970,1980)数据,采用球谱分析原理提取区域场,以频谱分析原理计算居理面深度,对西藏雅江大拐弯地区25万Km2范围的地磁场进行了数据处理。结合该区的地质、地热、地震等方面的资料,综合分析了该区地磁场及磁性基底的变化规律,推断了该区内深大断裂构造线的位置、走向、倾向等。这些结果对了解该区深部地质情况提供了参考信息。  相似文献   

8.
The Hammam Faroun has a particular importance due to its geothermal activity which constitutes the main geothermal resource of Egypt. The area is located on the Sinai Peninsula, a subplate bounded by two seismically active structural zones along the Gulf of Suez and Gulf of Aqaba. High-resolution ground-based gravity and magnetic data are available for the entire Hammam Faroun area, acquired as part of a national project to explore for mineral, geothermal, and hydrocarbon resources. Gravity and magnetic data were analyzed using Source Edge Detection and Source Parameter Imaging (SPI) techniques to image subsurface structures. These analyses show that the area is characterized by a set of northwest-striking faults lying parallel to the Gulf of Suez. Orthogonal patterns are also present, possibly related to rifting of the Gulf of Suez. Depth analysis using the SPI method indicates that surface faults extend to 5-km depth. Analysis of potential-field data elucidates the structurally complex subsurface structure of the Hammam Faroun area.  相似文献   

9.
开发地热资源有着很大的不确定性和很高的经济风险,需要建立可靠的数学预测模型以确定潜在地热区。通过对地震震中、断层、布格重力异常、磁异常和红外遥感5个与地热密切相关的因素进行整合,建立了地热潜力区的数学预测模型;并以土耳其西安纳托利亚地区为例,对模型的优劣性进行分析评价。运用指数叠加模型和证据权重模型分别建立地热潜力区图,预测成功指数表明证据权重模型的预测结果更为准确。其中,中高潜力区总面积为26 529 km2,占总面积的31.14%,包含39个地热点,占总地热点的50.65%。预测结果显示潜在地热区位于Ayd?n,Denizli,Manisa和Bal?kesir,其中前2个地区的地热已经被开发利用。本研究可以在地热勘探阶段确定潜在地热区,降低经济风险。  相似文献   

10.
In many Precambrian provinces the understanding of the tectonic history is constrained by limited exposure and aeromagnetic data provide information below the surface cover of sediments,water,etc.and help build a tectonic model of the region.The advantage of using the aeromagnetic data is that the data set has uniform coverage and is independent of the accessibility of the region.In the present study,available reconnaissance scale aeromagnetic data over Peninsular India are analyzed to understand the magnetic signatures of the Precambrian shield and suture zones thereby throwing light on the tectonics of the region.Utilizing a combination of differential reduction to pole map,analytic signal,vertical and tilt derivative and upward continuation maps we are able to identify magnetic source distribution,tectonic elements,terrane boundaries,suture zones and metamorphic history of the region.The magnetic sources in the region are mainly related to charnockites,iron ore and alkaline intrusives.Our analysis suggests that the Chitradurga boundary shear and Sileru shear are terrane boundaries while we interpret the signatures of Palghat Cauvery and Achankovil shears to represent suture zones.Processes like metamorphism leave their signatures on the magnetic data:prograde granulites(charnockites)and retrograde eclogites are known to have high susceptibility.We fnd that charnockites intruded by alkali plutons have higher magnetization compared to the retrogressed charnockites.We interpret that the Dharwar craton to the north of isograd representing greenschist to amphibolite facies transition,has been subjected to metamorphism under low geothermal conditions.Some recent studies suggest a plate tectonic model of subductionecollisioneaccretion tectonics around the Palghat Cauvery shear zone(PCSZ).Our analysis is able to identify several west to east trending high amplitude magnetic anomalies with deep sources in the region from Palghat Cauvery shear to Achankovil shear.The magnetic high associated with PCSZ may represent the extruded high pressureeultra high temperature metamorphic belt(granulites at shallow levels and retrogressed eclogites at deeper levels)formed as a result of subduction process.The EW highs within the Madurai block can be related to the metamorphosed clastic sediments,BIF and mafc/ultramafc bodies resulting from the process of accretion.  相似文献   

11.
An analysis of Bouguer gravity anomaly data and geothermal gradient data obtained from bottom hole and drill stem tests temperature is used to determine the crustal structure of the Sahel Basin in eastern Tunisia and its role in the maturation and location of the large number of oil and gas fields in the region. The regional Bouguer gravity anomaly field is dominated by gradual increase in values from the northwest to southeast and is may be caused by crustal thinning as revealed by regional seismic studies. In addition, higher geothermal gradients in the same region as the Bouguer gravity anomaly maximum add an additional constraint for the existence of crustal thinning in the region. A detailed analysis of the Bouguer gravity anomaly data was performed by both upward continuation and horizontal gradients. These two techniques were combined to show that the study area consists of two structural regions: (1) the North–South Axis (NOSA)–Zeramedine region which is characterized by northwest-dipping, northeast-striking faults, thicker crust (30–31 km) and low geothermal gradients, and (2) the Mahres–Kerkennah region which is characterized by vertical, northwest-striking faults, thinner crust (28–29 km) and higher geothermal gradients. The correlation of a variety of features includes mapped and geophysically defined faults, volcanic rocks, a thinned crust and high geothermal gradients within the same location as known oil and gas fields indicate that the faults are a major factor in the location of these petroleum accumulations.  相似文献   

12.
The region under study is located in the active “transition zone” from the Eurasian continent to the Pacific Ocean. The zone occupies not only the continent-ocean border area (continental coastline, marginal seas, island arcs, and deep-sea trenches) but also the margins of intracontinental regions of the Eurasian continent with different structures and regimes of development. The transition zone is a natural buffering and damping regulator of the interaction between the Eurasian and Pacific plates and is characterized by intense orogenesis, contemporary volcanism, active seismicity, diverse geothermal regime, and highly nonuniform measured heat-flow values. Available geothermal data for the region are not sufficiently generalized. After the latest maps compiled in the 1990s, new data have been obtained and new geoinformation technologies have been developed. In the study presented in this paper, available geothermal information has been generalized and a detailed heat flow distribution map has been compiled and used to calculate Moho temperatures, to determine the thickness of the “geothermal” lithosphere, and to construct distribution maps of these parameters.  相似文献   

13.
王冰冰 《吉林地质》2019,38(3):84-88
通过《吉林省公主岭经济开发区新凯河地热资源勘查项目》中水质分析资料,对白垩系泉头组地热流体水化学特征及其成因进行初步探讨,地热流体水化学形成作用分析基于地热流体的piper三线图和地热流体的水岩相互作用Na-K-Mg平衡图,取得了一些松辽盆地东南隆起东南部单斜地热田地热流体水化学形成的初步认识。  相似文献   

14.
《International Geology Review》2012,54(11):1384-1400
A better understanding of the chemical evolution of fluids in geothermal and hydrothermal systems requires data-based knowledge regarding the interplay between active tectonics and fluid flow. The Southern Andes volcanic zone is one of the best natural laboratories to address this issue because of the occurrence of numerous geothermal areas, recent seismic activity generated by regional fault systems, and intense volcanic activity. Geothermal systems have been understudied in this area, and limited scientific information exists about the role of local kinematic conditions on fluid flow and mineralization during the development and evolution of geothermal reservoirs. In this study, we provide data for a 1:200,000 scale geological and structural map of the Villarrica–Chihuio area as a setting in which to perform a structural analysis of active geothermal areas. This structural analysis, combined with geochemical modelling of hot spring data, allows the identification of two magmatic-tectonic-geothermal domains based on fault systems, volcanic activity, and lithologies. The Liquiñe–Ofqui fault system (LOFS) domain encompasses geothermal areas located either along the master or subsidiary faults. These are favourably orientated for shear and extension, respectively. In the LOFS domain, the geochemistry of hot spring discharges is controlled by interaction with the crystalline basement, and is characterized by low B/Cl conservative element ratios and high pH. In marked contrast, the arc-oblique long-lived fault systems (ALFS) domain includes geothermal occurrences located on the flanks of volcanoes forming WNW-trending alignments; these systems are built over faults that promote the development of crustal magma reservoirs. Unlike the first domain, the fluid chemistry of these geothermal discharges is strongly controlled by volcanic host rocks, and is typified by lower pH and higher B/Cl ratios. Reaction path modelling supports our model: chemical evolution of geothermal fluids in the Villarrica–Chihuio area is strongly dependent on structurally controlled mechanisms of heat transfer. Within this framework, heat transfer by conduction is responsible for the LOFS domain, whereas magmatically enhanced advective transport dominates heat flow in the ALFS domain. Although more studies are needed to constrain the complex interplay between tectonics and fluid flow, results from this study provide new insights towards efficient exploration strategies of geothermal resources in Southern Chile.  相似文献   

15.
Groundwater plays a key role in arid regions as the majority of water is supplied by it. Groundwater pollution is a major issue, because it is susceptible to contamination from land use and other anthropogenic impacts. A study was carried out to build a vulnerability map for the Ordos Plateau using the DRASTIC model in a GIS environment. The map was designed to show the areas of the highest potential for groundwater pollution based on hydrogeological conditions. Seven environmental parameters, such as depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer, were incorporated into the DRASTIC model and GIS was used to create a groundwater vulnerability map by overlaying the available data. The results of this study show that 24.8 % of the study area has high pollution potential, 24.2 % has moderate pollution potential, 19.7 % has low pollution potential, and the remaining 31.3 % of the area has no risk of groundwater pollution. The regional distribution of nitrate is well correlated with the DRASTIC vulnerability index. In contrast to this, although the DRASTIC model indicated that the western part had no risk, nitrate concentrations were higher in some of these areas. In particular, higher nitrate concentrations were recorded along river valleys and around lakes, such as the Mulin River valley. This is mainly caused by the intensive agricultural development and favorable conditions for recharge along river valleys.  相似文献   

16.
Geothermal modeling is an important part of large-scale basin studies. Based on a new 3D structural model of the Northeast German basin, the present day regional geothermal field is modeled. Range and regional trend of the modeled temperature values are in agreement with the published data. Due to the high spatial resolution, the calculated temperature distribution provides additional information with respect to areas where no measured data is available. The results are used as input and boundary parameters for small-scale models of geothermal energy production. In general, in many regions not enough data is available to define all necessary physical or chemical parameters for modeling. In this context, data obtained from the large-scale model help to constrain unknown parameters. Subsequently, the small-scale model is used to simulate various production schemes focusing on enhanced predictions with respect to the possible lifetime of such installations. The simulation results also show the need for elaborated models if reliable predictions of the temperature evolution are required.  相似文献   

17.
Pamancalan is located in Lebak Regency, Province of Banten. This area is located in the western part of Java Island, Indonesia. The geothermal manifestation in this area is in the form of hot spring in Cipamancalan River. But, how the structure of the geothermal system, the reservoir depth, and the thermal source in the Pancamalan area has not been studied much. Therefore, there is a need to conduct a geophysics study by surveying the gravity and magnetic field. A study, which used magnetic and gravity data to discover reservoir, has been conducted in the Pamancalan geothermal area in Lebak, Banten. Topographic map for total magnetic and earth gravity anomaly shows that the anomaly is located in the center and southern part of the presumed reservoir. 2.5-D section model of magnetic anomaly shows that there is a rock formation which shaped the geothermal system in Pamancalan. The thermal source is diorite which is a by-product of Hanjawar Mountain; the reservoir rocks consist of sandstone, limestone, and breccia; and the cap rock is in the form of clay and tuff. It is predicted that there is an intrusive body which functions as thermal source in the depth between 1650 and 4000 m, the reservoir depth is around 700 m, and the depth of clay cap is around 0 to 700 m. The geothermal manifestation in Pamancalan area is controlled by Cigeledug fault from the southwest and Cipamancalan fault from the north and south.  相似文献   

18.
ABSTRACT

Geothermal exploration in the Central Andean Volcanic Zone (CAVZ) focuses on heat capacities of known geothermal systems, yet the role of faults, veins, fractures and folds on the evolution and migration of fluids is far from complete. Here, we present a compilation of He and Sr isotope data and newly generated structural maps to examine if particular tectonic configurations are associated with fluids migrating from different crustal levels. Accordingly, we defined three tectono-geothermal environments (T1–T3) depicting specific structural arrangements and spatial relation with geothermal and volcanic manifestations. T1 is dominated by left-lateral strike-slip NW-striking faults, and geothermal and volcanic manifestations occur along the traces of these structures. T2 is dominated by N-striking thrust faults and parallel fault-propagated folds, cut and displaced by NW-striking faults. Here, geothermal manifestations occur at fault intersections and at fold hinges. T3 is defined by left-lateral/normal NW-striking faults, with geothermal and volcanic manifestations lying along fault traces. Each tectono-geothermal environment yields distinctive isotope ratios and geothermal reservoir temperatures. T1 shows high helium and low strontium ratios, and temperatures between 220° and 310°C. T3 shows low helium and high strontium ratios and temperatures between 260° and 320°C. T2 isotope ratios fall between T1 and T3, with lowest (130°-250°C) reservoir temperatures. We argue that these particular isotope signatures are due to a structural control on reservoir location and orientation. The orientation of the fracture mesh genetically associated with each tectono-geothermal environment is a first-order control on the migration pathway of fluids. Our model shows that T1 allows fluxing of deeper fluids, T2 promotes storage and favors longer residence times and T3 enhances subvertical fluid migration. Results here help to explain the evolution of geothermal systems in a wider context, including fault systems and Sr and He isotope variations, thus providing a framework for geothermal exploration in the CAVZ.  相似文献   

19.
The main objective of this study was to apply a statistical (information value) model using geographic information system (GIS) to the Chencang District of Baoji, China. Landslide locations within the study area were identified using reports and aerial photographs, and a field survey. A total of 120 landslides were mapped, of which 84 (70 %) were randomly selected for building the landslide susceptibility model. The remaining 36 (30 %) were used for model validation. We considered a total of 10 potential factors that predispose an area to a landslide for the landslide susceptibility mapping. These included slope degree, altitude, slope aspect, plan curvature, geomorphology, distance from faults, lithology, land use, mean annual rainfall, and peak ground acceleration. Following an analysis of these factors, a landslide susceptibility map was produced using the information value model with GIS. The resulting landslide susceptibility index was divided into five classes (very high, high, moderate, low, and very low) using the natural breaks method. The corresponding distribution area percentages were 29.22, 25.14, 15.66, 15.60, and 14.38 %, respectively. Finally, landslide locations were used to validate the results of the landslide susceptibility map using areas under the curve (AUC). The AUC plot showed that the susceptibility map had a success rate of 81.79 % and a prediction accuracy of 82.95 %. Based on the results of the AUC evaluation, the landslide susceptibility map produced using the information value model exhibited good performance.  相似文献   

20.
基于重磁场特征的松辽盆地基底岩性研究   总被引:2,自引:0,他引:2  
吴真玮 《地质与勘探》2015,51(5):939-945
盆地的基底埋藏深度、岩性和断裂分布与地热资源的形成、分布和开发利用密切相关。本文基于重磁方法的特点和松辽盆地的重磁场异常,利用最佳向上延拓的方法进行场源分离,提取了基底重磁异常信息;依据不同岩石物理属性(密度和磁性)和重磁异常对应分析的结果,对松辽盆地的基底岩性分布进行了划分,其结果对盆地地热资源远景评价和开发利用有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号