首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

2.
Major ions and important trace elements in addition to δ18O and δ2H were analysed for 43 groundwater samples sampled from the Al-Batin alluvial fan aquifer, South Iraq. The most dominant ions (with respect to molarity) were: Na+ > Cl? > SO4 2? > Ca2+ > Mg2+ > NO3 ? > HCO3 ?, with total dissolved solids (TDS) averaging 7855 mg/L. High concentrations were found for the trace elements U, Mo, V, B, Sr, and Cr. This study suggests a hydraulic connection exists near the fan apex between the uppermost part of the Al-Batin aquifer and the underlying Dammam aquifer by means of the Abu-Jir fault system. Except for the effects of extensive irrigation, fertilizer use, and poorly maintained sewers, the groundwater chemistry is mainly controlled by geological processes such as dissolution of evaporites and the enrichment of dissolved ions as a result of the high evaporation and low recharge rate. Furthermore, it is shown that the Kuwaiti fuel–oil burning during Gulf War in 1991 contributed to the enrichment of V and Mo in the studied aquifer. The spatial distribution of most ions appears to generally increase from the south-west towards the north-east, in the direction of groundwater flow. The stable isotopes show heavier values in groundwater with a gradually increasing trend in the direction of groundwater flow due to the decreasing depth to groundwater and thus increasing of evaporation from both groundwater or irrigation return water. Additionally, the stable isotope signature suggests that rainfall from sources in the Arabian Gulf and the Arabian Sea is the major source of recharge for the Al-Batin aquifer. Except for two samples of groundwater, all samples were not suitable for potable use according to the WHO standards. Most of the groundwater is suitable for some agricultural purpose and for livestock water supply. Apart from the high salinity, boron represents the most critical element in the groundwater with respect to agricultural purposes.  相似文献   

3.
A geophysical and geochemical study was carried out in the Maneadero aquifer, Baja California, Mexico, with the aim of identifying potential recharge locations for reclaimed water (RW). This coastal aquifer shows a significant decline in water quality, both as a result of salinization and the pollution by nitrates. Total dissolved solids (TDS) in an extreme case increased from 4 g l?1 in 2000 to 27 g l?1 in 2011. Nitrate as N–NO3, reaches 46 mg l?1. Based on their geochemistry and location, four water-quality zones are identified: (a) fresh water with TDS ≈ 1 g l?1 in the upper creeks, (b) mixture between seawater and freshwater in the coast-proximal sections, (c) water significantly enriched in nitrate below and adjacent to the town of Maneadero, and (d) brackish water with no signs of current interaction with freshwater. The 3D geophysics identifies the influence of modern recharge areas and also buried flow-paths down to at least 30 m depth. The locations best suitable for aquifer recharge are those with equal or higher TDS concentrations (>2.5 g l?1) than RW, which are located at the brackish water zone and/or at the coastal limits of the mixing zones.  相似文献   

4.
Mine water samples collected from different mines of the North Karanpura coalfields were analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness (TH), major anions, cations and trace metals to evaluate mine water geochemistry and assess solute acquisition processes, dissolved fluxes and its suitability for domestic, industrial and irrigation uses. Mine water samples are mildly acidic to alkaline in nature. The TDS ranged from 185 to 1343 mg L?1 with an average of 601 mg L?1. Ca2+ and Mg2+ are the dominant cations, while SO4 2? and HCO3 ? are the dominant anions. A high concentration of SO4 2? and a low HCO3 ?/(HCO3 ? + SO4 2?) ratio (<0.50) in the majority of the water samples suggest that either sulphide oxidation or reactions involving both carbonic acid weathering and sulphide oxidation control solute acquisition processes. The mine water is undersaturated with respect to gypsum, halite, anhydrite, fluorite, aluminium hydroxide, alunite, amorphous silica and oversaturated with respect to goethite, ferrihydrite, quartz. About 40% of the mine water samples are oversaturated with respect to calcite, dolomite and jarosite. The water quality assessment shows that the coal mine water is not suitable for direct use for drinking and domestic purposes and needs treatment before such utilization. TDS, TH, F?, SO4 2?, Fe, Mn, Ni and Al are identified as the major objectionable parameters in these waters for drinking. The coal mine water is of good to suitable category for irrigation use. The mines of North Karanpura coalfield annually discharge 22.35 × 106 m3 of water and 18.50 × 103 tonnes of solute loads into nearby waterways.  相似文献   

5.
To understand the impact of the influence of treated wastewater, a study was undertaken in the downstream side of Wadi Hanifa in the southern part of Riyadh City in Saudi Arabia. Chemical elements from 17 groundwater samples, 9 surface water samples (treated wastewater), and 14 soil samples were analyzed. Water facies analyses showed that both groundwater and surface water belong to the SO4-Cl class. However, the groundwater is characterized by high salinity (average value of 3547 mg/l), which may be result of the greater rock-water interaction and limited rainfall recharge. The NO3 values are also high in the groundwater samples (average value of 40 mg/l) and are mainly attributed to the agricultural practices in the study area. The surface water samples (treated wastewater from the plant) shows an average salinity value of 1232 mg/l and is better suited for irrigation purposes. Heavy elements analyzed in the soil samples show high concentrations of all the elements except Mn and Ni as compared to their background concentration. Enrichment factor and index of geoaccumulation calculated from the soil samples indicate that they are severely enriched with respect to Cd and Se. The spatial distribution maps were prepared based on kriging interpolation technique to estimate the concentrations of the analyzed elements at unknown locations. The treated wastewater in the study area is better suited for agricultural and domestic activities as compared to groundwater.  相似文献   

6.
The concentration and dynamic of soil trace metals in natural ecosystems, in particularly, is dependent on the lithology of parent rock as well as topography and geopedological processes. To ascertain more knowledge for this dependency, soils on three parent rocks involving peridotite, pegmatite, and dolerite in two contrasting topography aspects were investigated. The total values of Fe, Mn, Zn, Cu, and Ni were determined and compared for different soil pedons. The concentration of Fe, Mn, and Ni were highest in soils developed from peridotite (127, 1.8 g kg?1, and 218 mg kg?1, respectively), intermediate in soils derived from dolerite (81, 1.3 g kg?1, and 166 mg kg?1, respectively), and least in soil developed from pegmatite (50, 0.23 g kg?1, and 20 mg kg?1, respectively). The values of Zn and Cu, originated from different parent rocks, were in order of dolerite (78 mg kg?1) > peridotite (77 mg kg?1) > pegmatite (28 mg kg?1) and pegmatite (121 mg kg?1) > peridotite (111 mg kg?1) > dolerite (28 mg kg?1), respectively. For most of the studied pedons, profile metals distribution differed among the soils: The values of Fe, Cu, and Ni were enriched in the cambic horizons mainly as result of release, mobilization, and redistribution of the studied metals during geopedological processes, whereas those of Zn and Mn were concentrated in the surface horizons. Probably due to greater weathering rate of trace metal-bearing rocks on north-facing slope, the content of the trace metals along with the geoaccumulation index (I geo) and the degree of soil contamination (C d) were higher than on south-facing slope. Based on assessment of soil pollution indices, the soils were categorized as unpolluted [I geo ≤ 0 (class 0)], unpolluted to moderately polluted levels [0 < I geo < 1 (class 1)], and very low [C d < 1.5 (class 0)] to low degree of contamination [1.5 < C d < 2 (class 1)].  相似文献   

7.
Shallow groundwater (>30 mbgl) is an essential source of drinking water to rural communities in the Ndop plain, northwest Cameroon. As a contribution to water management, the effect of seasonal variation on the groundwater chemistry, hydrochemical controls, drinking quality and recharge were investigated during the peaks of the dry (January) and rainy (September) seasons. Field measurements of physical parameters were preceded by sampling 58 groundwater samples during both seasons for major ions and stable isotope analyses. The groundwater, which was barely acidic (mean pH of 6) and less mineralised (TDS < 272 mg/l), showed no significant seasonal variation in temperature, pH and TDS during the two seasons. The order of cation abundance (meq/l) was Na+ > Ca2+ > Mg2+ > K+ and Na+ > Mg2+ > Ca2+ > K+ in the dry and rainy seasons, respectively, but that of anions ( \( {\text{HCO}}_{3}^{ - } \)  >  \( {\text{NO}}_{3}^{ - } \)  > Cl? >  \( {\text{SO}}_{4}^{2 - } \)  > F?) was similar in both seasons. This suggests a negligible effect of seasonal variations on groundwater chemistry. The groundwater, which was CaMgHCO3 and NaHCO3, is chemically evolved rainfall (CaMgSO4Cl) in the area. Silicate mineral dissolution and cation-exchange were the main controls on groundwater chemistry while there was little anthropogenic influence. The major ions and TDS concentrations classified the water as suitable for human consumption as per WHO guidelines. The narrow cluster of δ18O and δD of same groundwater from both seasons between the δ18O and δD values of May–June precipitation along the Ndop Meteoric Water Line indicates meteoric origin, rapid recharge (after precipitation) and timing of recharge between May and June rainfall. Diffuse groundwater recharge mainly occurs at low altitudes (<1,400 m asl) within the plain. Besides major ions and TDS, the similar δ18O and δD of groundwater from both seasons indicate a consistent groundwater recharge and flow pattern throughout the year and resilience to present day short-term seasonal climatic variations. However, controlled groundwater abstraction is recommended given the increasing demand.  相似文献   

8.
The integration of the statistical approaches and GIS tools with the hydrogeological and geological contexts allowed the assessment of the processes that cause groundwater quality deterioration in the great important deltaic aquifer in the northeastern Tunisia (Medjerda Lower Valley Aquifer). The spatial variation of the groundwater parameters and the molar ratio (Cl?/Br?) were also used to determine the possible impacts from seawater intrusion and from the septic tank leachate. Sixty shallow groundwater samples were collected in 2014 and analyzed for major and trace ions over an area of about 1090 km2 to determine the suitability for drinking or agricultural purposes. The total dissolved solids (TDS) content ranges from 1005 to 19,254 mgl?1 with a mean value of 3477.18 mgl?1. The chemistry is dominated by the sodium–chloride waters (55%). Mapping of TDS, Cl?, Na+, SO42? and NO3? using kriging method shows a clear increase in salinity toward the coastline accompanied by Na+ and Cl? increase which may be related to seawater intrusion and halite dissolution. Locally, higher nitrate concentration is related to the agricultural activities inducing contribution of chemical fertilizers and irrigation with treated wastewater. The saturation indices indicate that all carbonate minerals tend to reach saturation equilibrium confirming water–rock interactions, while evaporitic minerals are still in sub-saturation state and may increase the salinity of the groundwater. The principal component analysis proves the occurrence of groundwater contamination principally by seawater intrusion in the factor I (74.15%) and secondary by an anthropogenic source in the factor II (10.35%).  相似文献   

9.
Accurate recharge estimation is essential for effective groundwater management, especially in the North China Plain, where irrigation return flow is significant to vertical recharge but brings difficulty for recharge estimation. Three environmental tracers (F?, Cl? and SO4 2?) were used to estimate vertical recharge based on the mass balance and cumulative methods. Four boreholes were dry-drilled to 5–25 m depth beneath irrigated farmland and one was drilled to 5 m beneath non-irrigated woodland; soil samples were collected in all boreholes at set depths. The results indicated that F?, Cl? and SO4 2?were suitable tracers beneath the non-irrigated woodland, yielding recharge rates of 16.9, 18.8 and 19.4 mm/year, respectively. Recharge estimation was not straightforward when taking account of crop type, irrigation and/or fertilizer use. After comparing with previous research, conclusions were drawn: Cl? was an appropriate tracer for irrigated farmland when taking account of Cl? input from irrigation and absorption by crops; recharge rates were 65.9–126.8 mm/year. However, F? was a more suitable tracer for irrigated regions where account is made of the proportion of precipitation to irrigation return flow, provided low F? concentrations can be measured reliably.  相似文献   

10.
Assessment of groundwater quality is an important aspect of water security, which is the key to ensure sustainable development. The objective of the study is to bring out an integrated approach for assessment of groundwater quality for drinking and irrigation purposes. Gogi region, Karnataka, India was chosen as the study area due to the effect of the presence of medium-grade uranium deposits. An integrated approach including the concentration of major ions, trace elements and uranium was employed to investigate the quality of groundwater. Totally, 367 groundwater samples were collected periodically from 52 wells distributes over the Gogi region and the parameters such as pH, electrical conductivity, total dissolved solids (TDS), Ca2+, Mg2+, Na+, K+, Cl?, SO4 2?, NO3 ?, Zn, Pb, Cu, and uranium of groundwater were analysed. Spatial distribution maps of various chemical constituents were prepared using geographic information system and its temporal variation was plotted in box and whisker plot. The analytical data were compared with Bureau of Indian Standards and World Health Organisation standards to determine drinking water quality and parameters such as salinity hazard, alkalinity hazard and percent sodium were estimated to assess the irrigation quality. Multivariate statistical analysis by cluster analysis was also performed which results in two groups consisting of wells with unsuitable water for drinking purposes. Groundwater in about 15% of the sampling wells were found to be unsuitable for domestic purpose based on TDS and about 17% were unsuitable based on uranium concentration. Finally, integration of spatial variation in TDS and uranium reveals that about 25% of the wells were unsuitable for domestic purposes. It is suggested that such an integrated approach needs to be formulated considering major ions, trace elements and radioactive elements for proper assessment of water quality. Implementation of managed aquifer recharge structures in the study area is suggested since it would potentially reduce the concentration of ions.  相似文献   

11.
The hydrogeochemical and isotopic evolution of groundwaters in the Mio–Pliocene sands of the Complexe Terminal (CT) aquifer in central Algeria are described. The CT aquifer is located in the large sedimentary basin of the Great Oriental Erg. Down-gradient groundwater evolution is considered along the main representative aquifer cross section (south–north), from the southern recharge area (Tinrhert Plateau and Great Oriental Erg) over about 700 km. Groundwater mineralisation increases along the flow line, from 1.5 to 8 g l?1, primarily as a result of dissolution of evaporite minerals, as shown by Br/Cl and strontium isotope ratios. Trends in both major and trace elements demonstrate a progressive evolution along the flow path. Redox reactions are important and the persistence of oxidising conditions favours the increase in some trace elements (e.g. Cr) and also NO3 ?, which reaches concentrations of 16.8 mg l?1 NO3-N. The range in 14C, 0–8.4 pmc in the deeper groundwaters, corresponds with late Pleistocene recharge, although there then follows a hiatus in the data with no results in the range 10–20 pmc, interpreted as a gap in recharge coincident with hyper-arid but cool conditions across the Sahara; groundwater in the range 24.7–38.9 pmc signifies a distinct period of Holocene recharge. All δ18O compositions are enriched relative to deuterium and are considered to be derived by evaporative enrichment from a parent rainfall around ?11‰ δ18O, signifying cooler conditions in the late Pleistocene and possibly heavy monsoon rains during the Holocene.  相似文献   

12.
This paper describes the use of multivariate statistical analysis to trace hydrochemical evolution in a limestone terrain at Zagros region, Iran. The study area includes a deep confined aquifer, overlaid by an unconfined aquifer. The method involves the use of principal component analysis (PCA) to assess and evaluate the hydrochemical evolution based on chemical and isotope variables of 12 piezometers drilled in both the unconfined and confined aquifers. First PCA on all variables shows that water–rock interaction under different conditions with respect to the atmospheric CO2 is the main process responsible for chemical constituents. As a result, combinations of several ratios such as Ca/TDS, SO4/TDS and Mg/TDS with physico-chemical and isotope variables reveal different hydrochemical evolution trend in the aquifers. Second PCA on the selective samples and variables reveals that displacement of the unconfined samples from dry to wet season follows a refreshing trend towards river samples that is characterized by reducing electrical conductivity and increasing sulphate and tritium contents. However, the refreshing trend cannot be traced in the confined aquifer samples suggesting no recharge from river to the confined aquifer. Third PCA reveals that, chemical composition of water samples in the unconfined aquifer tends to have considerable difference from each other in the end of recharge period. In contrast, the confined aquifer samples have a tendency to show similar chemical composition during recharge period in comparison to end of dry period. This difference is caused by different mechanism of recharge in the unconfined aquifer (through the whole aquifer surface) and the confined aquifer (through the limited recharge area).  相似文献   

13.
Investigations in the Jiaozuo coal-mining district (China) aim to link water-inrush aquifers with the sources of groundwater recharge. Concentrations of TDS, HCO 3 , Cl and Na+ in the groundwater samples gradually decrease with increasing depth; in contrast, the factor 1 value of the Q-mode analysis gradually increases, which indicates that the deep groundwater may upflow, recharging the aquifers near the faulted zone. Some groundwater samples (above the local meteoric water line and ‘evaporation line 1’) may originate from recharge by infiltrating local rainfall. Spring and river samples are symmetrically distributed on the regression line of the Ordovician and Carboniferous limestone aquifer groundwater (δ2H?=?3.76?×?δ18O?–?31.77) and may, therefore, originate from groundwater recharge in the northern Taihang mountains. This mechanism is supported by the observation that groundwater levels change with rainfall. According to radiocarbon residence-time estimates, two groundwater sample sites may have been recharged during the late glacial stage.  相似文献   

14.
Landfill leachates are not adequately treated in traditional wastewater treatment plants, on account of their problematic peculiarities: i.e., dark colour, high concentration of recalcitrant pollutants and COD, and high toxicity. In this work, 19 biomasses (15 autochthonous and 4 allochthonous) were exploited in biosorption treatment for the remediation of a leachate (influent) and the effluent coming from the biological oxidation with activated sludge and nitrification–denitrification treatment. The effects of the initial pH, the biomass amount, and the medium for the biomass pre-culture were considered. The best configuration was: pH 5, 5 g L??1 biomass cultivated on STY medium. Eventually, the two most effective biomasses, Cunninghamella bertholletiae MUT 2861 and Aspergillus fumigatus MUT 4050, were used in consecutive 2 h cycles in a batch biosorption experiment. The effectiveness of the treatment decreased in subsequent cycles in terms of decolourisation (31–15%). COD, Cl?, SO42?, total N, and toxicity were removed mainly in the second cycle of treatment (up to ??36, ??12, ??15, ??17 and ??49%, respectively). The results suggest that the effluent toxicity was basically due to uncoloured substances, which were mainly removed after coloured molecules.  相似文献   

15.
Groundwater systems in the San Luis Valley, Colorado, USA have been re-evaluated by an analysis of solute and isotopic data. Existing stream, spring, and groundwater samples have been augmented with 154 solute and isotopic samples. Based on geochemical stratification, three groundwater regimes have been identified within 1,200 m of the surface: unconfined, upper active confined, and lower active confined with maximum TDS concentrations of 35,000, 3,500 and 600 mg/L, respectively. The elevated TDS of northern valley unconfined and upper active confined systems result from mineral dissolution, ion exchange and methanogenesis of organic and evaporate lake sediments deposited in an ancient lake, herein designated as Lake Sipapu. Chemical evolutions along flow paths were modeled with NETPATH. Groundwater ages, and δ13C, δ2H and δ18O compositions and distributions, suggest that mountain front recharge is the principle recharge mechanism for the upper and lower confined aquifers with travel times in the northern valley of more than 20,000 and 30,000 14C years, respectively. Southern valley confined aquifer travel times are 5,000 14C years or less. The unconfined aquifer contains appreciable modern recharge water and the contribution of confined aquifer water to the unconfined aquifer does not exceed 20%.  相似文献   

16.
Aquifer-based groundwater quality assessment offers critical insight into the major hydrochemical processes, and aids in making groundwater resources management decisions. The Texas Rolling Plains (TRP), spanning over 22 counties, is a major agro-ecological region in Texas from where highest groundwater nitrate (NO3 ?) levels in the state have been reported. In this study, we present a comparative assessment of major hydrochemical facies pertaining to NO3 ? contamination and a host of species such as sulfate (SO4 2?), chloride (Cl?), and total dissolved solids (TDS) in different water use classes in the Seymour and Blaine aquifers, underlying the TRP. Aquifer-stratified groundwater quality information from 1990 to 2010 was obtained from the Texas Water Development Board and aggregated over decadal scale. High groundwater salinization was found in the municipal water use class in the Blaine aquifer with about 100, 87 and 50 % of observations exceeding the secondary maximum contaminant level for TDS, SO4 2?, and Cl?, respectively in the 2000s (2000–2010). The NO3-contamination was more alarming in the Seymour aquifer with 82 and 61 % of observations, respectively, exceeding the maximum contaminant level (MCL) in the irrigation and municipal water use classes in the 2000s. Salinization was more influenced by SO4 2? and Cl? in the Blaine aquifer and by NO3 ? in the Seymour aquifer. High NO3 ? (>MCL) observations in the Seymour aquifer occurred in the Ca–HCO3 and Ca–Mg–HCO3 facies, the domains of fresh water recharge and anthropogenic influences (e.g., agricultural activities, waste disposal). High SO4 2?, Cl? and TDS observations in the Blaine aquifer dominated the Ca–Cl, Na–Cl, and mixed Ca(Mg)–SO4(Cl) facies indicating evaporite dissolution, mixing and solute exchange, and lack of fresh recharge.  相似文献   

17.
Assessing groundwater recharge characteristics (recharge rate, history, mechanisms (piston and preferential flow)) and groundwater age in arid and semi-arid environments remains a difficult but important research frontier. Such assessments are particularly important when the unsaturated zone (UZ) is thick and the recharge rate is limited. This study combined evaluations of the thick UZ with those of the saturated zone and used multiple tracers, such as Cl, NO3, Br, 2H, 18O, 13C, 3H and 14C, to study groundwater recharge characteristics in an integrated loess tableland in the Loess Plateau, China, where precipitation infiltration is the only recharge source for shallow groundwater. The results indicate that diffuse recharge beneath crops, as the main land use of the study area, is 55–71 mm yr?1 based on the chloride mass balance of soil profiles. The length of time required for annual precipitation to reach the water table is 160–400 yrs. The groundwater is all pre-modern water and paleowater, with corrected 14C age ranging from 136 to 23,412 yrs. Most of the water that eventually becomes recharge originally infiltrated in July–September. The Cl and NO3 contents in the upper UZ are considerably higher than those in the deep UZ and shallow groundwater because of recent human activities. The shallow groundwater has not been in hydraulic equilibrium with present near-surface boundary conditions. The homogeneous material of the UZ and relatively old groundwater age imply that piston flow is the dominant recharge mechanism for the shallow groundwater in the tableland.  相似文献   

18.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   

19.
The Ordos Basin of China encompasses Shaanxi, Gansu, and Shanxi provinces, Ningxia and Inner Mongolia autonomous regions. It lacks significant surface water resources. Among the water-bearing formations, the Luohe formation, with an area of 1.32×105 km2, is the most prospective aquifer. Groundwater quality data collected at 211 boreholes drilled into the Luhe formation indicate a complex distribution of groundwater chemistry. The hydrochemical properties were used to study the recharge, runoff, and discharge conditions of the groundwater in Ordos Basin and to evaluate sustainable groundwater resources. In the northern part of the basin, the hydrochemistry types and the total dissolved solids (TDS) show a clear lateral transition from SEE to NWW, indicating that the groundwater gets recharge in the northwest region and discharges in the southeast region. In the southern part of the basin, maximum TDS occurs at the center of the Malian River valley, from which the TDS decreases radially. Therefore, the groundwater in the southern basin gets recharge from the southeast and southwest regions, and the Malian River valley is the discharge zone. As a result of this research, the areas with portable groundwater were delineated. They include most of the southeast region of the Sishili Ridge, east of the Ziwu Mountain, and the southwest corner of the basin. The TDS of the groundwater in these regions is less than 1 g/l, and the hydrochemistry type is either HCO3 or HCO3·SO4.  相似文献   

20.
Discharge areas of carbonate fractured and karstified aquifers are a sensitive system of great interest, where frequently groundwater resources are tapped for drinking water supply. In geological settings affected by recent and/or active tectonics, mixing between fresh water coming from recharge areas and groundwater from deeper circuits, influenced by raising fluids, influences hydrogeochemistry. Surveys on major ions, trace elements and stable isotopes have been performed in the San Vittorino Plain (Central Italy), where the major source of drinking water for Rome is located (Peschiera Springs, mean discharge 18 m3 s?1, half of them tapped). Results of 21 springs revealed different contribution from recharge areas and deep flow paths, by increasing salinity and ion content, with particular references to Ca2+, HCO3 ? and SO4 2?. Three main groups, respectively, related to fresh waters from recharge areas, groundwater from deep contribution and a mixing group between them, have been identified. Water stable isotopes allow to identify the common origin from rainfall and a very steady contribution with seasons and year, due to the huge extent of recharge area (>1000 km2). Saturation Indexes gave insight on the contribution of deep fluids, mainly CO2 and H2S, which turned groundwater to undersaturated conditions, facilitating rock dissolution. By PHREEQC software, the mixing between two considered end-members has been simulated, evaluating about 25% of deep contribution in the basal springs of San Vittorino Plain. Chemistry of Peschiera spring reveals a very limited percentage of deep flow paths (10%), which can lead to slight hydrochemistry changes even in possible drought conditions, when discharge can decrease until 15 m3 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号