共查询到20条相似文献,搜索用时 2 毫秒
1.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution. 相似文献
2.
Reverse time migration is an advanced seismic migration imaging method. When the source wavefield and the receiver wavefield are cross-correlated, the cross-correlations of direct arrivals, backscattered waves and overturned waves will produce a lot of low-frequency noise, which will mask the final imaging results. Laplacian filtering, as a common method to suppress low-frequency noise, can adapt to any complex media, just adding a little computational cost. However, simple direct Laplacian filtering will destroy the characteristics of the useful signals. Therefore, the amplitude needs to be compensated before filtering when using the Laplacian filtering method. Zhang and Sun proposed an improved Laplacian filtering method and gave a simple calculation formula and explanation. This method can effectively suppress the low-frequency noise in reverse time migration while retaining the useful signal characteristics, but lacks detailed and strict mathematical derivation. Therefore, this paper gives a detailed and rigorous mathematical derivation of the amplitude-compensated Laplace filtering method from the point of view of amplitude-preserved filtering. The source wavelet is used instead of the source wavefield to compensate amplitude, just adding a little calculation cost. Finally, the amplitude-compensated Laplace filtering method is verified by two theoretical models and compared with the direct Laplacian filtering method. 相似文献
3.
We propose a method for imaging small‐scale diffraction objects in complex environments in which Kirchhoff‐based approaches may fail. The proposed method is based on a separation between the specular reflection and diffraction components of the total wavefield in the migrated surface angle domain. Reverse‐time migration was utilized to produce the common image gathers. This approach provides stable and robust results in cases of complex velocity models. The separation is based on the fact that, in surface angle common image gathers, reflection events are focused at positions that correspond to the apparent dip angle of the reflectors, whereas diffracted events are distributed over a wide range of angles. The high‐resolution radon‐based procedure is used to efficiently separate the reflection and diffraction wavefields. In this study, we consider poststack diffraction imaging. The advantages of working in the poststack domain are its numerical efficiency and the reduced computational time. The numerical results show that the proposed method is able to image diffraction objects in complex environments. The application of the method to a real seismic dataset illustrates the capability of the approach to extract diffractions. 相似文献
4.
Attenuation in seismic wave propagation is a common cause for poor illumination of subsurface structures. Attempts to compensate for amplitude loss in seismic images by amplifying the wavefield may boost high‐frequency components, such as noise, and create undesirable imaging artefacts. In this paper, rather than amplifying the wavefield directly, we develop a stable compensation operator using stable division. The operator relies on a constant‐Q wave equation with decoupled fractional Laplacians and compensates for the full attenuation phenomena by performing wave extrapolation twice. This leads to two new imaging conditions to compensate for attenuation in reverse‐time migration. A time‐dependent imaging condition is derived by applying Q‐compensation in the frequency domain, whereas a time‐independent imaging condition is formed in the image space by calculating image normalisation weights. We demonstrate the feasibility and robustness of the proposed methods using three synthetic examples. We found that the proposed methods are capable of properly compensating for attenuation without amplifying high‐frequency noise in the data. 相似文献
5.
State‐of‐the‐art 3D seismic acquisition geometries have poor sampling along at least one dimension. This results in coherent migration noise that always contaminates pre‐stack migrated data, including high‐fold surveys, if prior‐to‐migration interpolation was not applied. We present a method for effective noise suppression in migrated gathers, competing with data interpolation before pre‐stack migration. The proposed technique is based on a dip decomposition of common‐offset volumes and a semblance‐type measure computation via offset for all constant‐dip gathers. Thus the processing engages six dimensions: offset, inline, crossline, depth, inline dip, and crossline dip. To reduce computational costs, we apply a two‐pass (4D in each pass) noise suppression: inline processing and then crossline processing (or vice versa). Synthetic and real‐data examples verify that the technique preserves signal amplitudes, including amplitude‐versus‐offset dependence, and that faults are not smeared. 相似文献
6.
Tieyuan Zhu 《Geophysical Prospecting》2016,64(3):657-670
Attenuation compensation in reverse‐time migration has been shown to improve the resolution of the seismic image. In this paper, three essential aspects of implementing attenuation compensation in reverse‐time migration are studied: the physical justification of attenuation compensation, the choice of imaging condition, and the choice of a low‐pass filter. The physical illustration of attenuation compensation supports the mathematical implementation by reversing the sign of the absorption operator and leaving the sign of the dispersion operator unchanged in the decoupled viscoacoustic wave equation. Further theoretical analysis shows that attenuation compensation in reverse‐time migration using the two imaging conditions (cross‐correlation and source‐normalized cross‐correlation) is able to effectively mitigate attenuation effects. In numerical experiments using a simple‐layered model, the source‐normalized cross‐correlation imaging condition may be preferable based on the criteria of amplitude corrections. The amplitude and phase recovery to some degree depend on the choice of a low‐pass filter. In an application to a realistic Marmousi model with added Q, high‐resolution seismic images with correct amplitude and kinematic phase are obtained by compensating for both absorption and dispersion effects. Compensating for absorption only can amplify the image amplitude but with a shifted phase. 相似文献
7.
Prestack image volumes may be decomposed into specular and non‐specular parts by filters defined in the dip‐angle domain. For space‐shift extended image volumes, the dip‐angle decomposition is derived via local Radon transform in depth and midpoint coordinates, followed by an averaging over space‐shifts. We propose to employ prestack space‐shift extended reverse‐time migration and dip‐angle decomposition for imaging small‐scale structural elements, considered as seismic diffractors, in models with arbitrary complexity. A suitable design of a specularity filter in the dip‐angle domain rejects the dominant reflectors and enhances diffractors and other non‐specular image content. The filter exploits a clear discrimination in dip between specular reflections and diffractions. The former are stationary at the specular dip, whereas the latter are non‐stationary without a preferred dip direction. While the filtered image volume features other than the diffractor images (for example, noise and truncation artefacts are also present), synthetic and field data examples suggest that diffractors tend to dominate and are readily recognisable. Averaging over space‐shifts in the filter construction makes the reflectors? rejection robust against migration velocity errors. Another consequence of the space‐shift extension and its angle‐domain transforms is the possibility of exploring the image in a multiple set of common‐image gathers. The filtered diffractions may be analysed simultaneously in space‐shift, scattering‐angle, and dip‐angle image gathers by means of a single migration job. The deliverables of our method obviously enrich the processed material on the interpreter's desk. We expect them to further supplement our understanding of the Earth's interior. 相似文献
8.
Xiaoyu Zhang Qunshan Zhang George A. McMechan Gladys Gonzalez 《Geophysical Prospecting》2017,65(3):669-686
Reverse‐time migration gives high‐quality, complete images by using full‐wave extrapolations. It is thus not subject to important limitations of other migrations that are based on high‐frequency or one‐way approximations. The cross‐correlation imaging condition in two‐dimensional pre‐stack reverse‐time migration of common‐source data explicitly sums the product of the (forward‐propagating) source and (backward‐propagating) receiver wavefields over all image times. The primary contribution at any image point travels a minimum‐time path that has only one (specular) reflection, and it usually corresponds to a local maximum amplitude. All other contributions at the same image point are various types of multipaths, including prismatic multi‐arrivals, free‐surface and internal multiples, converted waves, and all crosstalk noise, which are imaged at later times, and potentially create migration artefacts. A solution that facilitates inclusion of correctly imaged, non‐primary arrivals and removal of the related artefacts, is to save the depth versus incident angle slice at each image time (rather than automatically summing them). This results in a three‐parameter (incident angle, depth, and image time) common‐image volume that integrates, into a single unified representation, attributes that were previously computed by separate processes. The volume can be post‐processed by selecting any desired combination of primary and/or multipath data before stacking over image time. Separate images (with or without artifacts) and various projections can then be produced without having to remigrate the data, providing an efficient tool for optimization of migration images. A numerical example for a simple model shows how primary and prismatic multipath contributions merge into a single incident angle versus image time trajectory. A second example, using synthetic data from the Sigsbee2 model, shows that the contributions to subsalt images of primary and multipath (in this case, turning wave) reflections are different. The primary reflections contain most of the information in regions away from the salt, but both primary and multipath data contribute in the subsalt region. 相似文献
9.
We developed a reverse‐time migration scheme that can image regions with rugged topography without requiring any approximations by adopting an irregular, unstructured‐grid modelling scheme. This grid, which can accurately describe surface topography and interfaces between high‐velocity‐contrast regions, is generated by Delaunay triangulation combined with the centroidal Voronoi tessellation method. The grid sizes vary according to the migration velocities, resulting in significant reduction of the number of discretized nodes compared with the number of nodes in the conventional regular‐grid scheme, particularly in the case wherein high near‐surface velocities exist. Moreover, the time sampling rate can be reduced substantially. The grid method, together with the irregular perfectly matched layer absorbing boundary condition, enables the proposed scheme to image regions of interest using curved artificial boundaries with fewer discretized nodes. We tested the proposed scheme using the 2D SEG Foothill synthetic dataset. 相似文献
10.
Reverse‐time migration has become an industry standard for imaging in complex geological areas. We present an approach for increasing its imaging resolution by employing time‐shift gathers. The method consists of two steps: (i) migrating seismic data with the extended imaging condition to get time‐shift gathers and (ii) accumulating the information from time‐shift gathers after they are transformed to zero‐lag time‐shift by a post‐stack depth migration on a finer grid. The final image is generated on a grid, which is denser than that of the original image, thus improving the resolution of the migrated images. Our method is based on the observation that non‐zero‐lag time‐shift images recorded on the regular computing grid contain the information of zero‐lag time‐shift image on a denser grid, and such information can be continued to zero‐lag time‐shift and refocused at the correct locations on the denser grid. The extra computational cost of the proposed method amounts to the computational cost of zero‐offset migration and is almost negligible compared with the cost of pre‐stack shot‐record reverse‐time migration. Numerical tests on synthetic models demonstrate that the method can effectively improve reverse‐time migration resolution. It can also be regarded as an approach to improve the efficiency of reverse‐time migration by performing wavefield extrapolation on a coarse grid and by generating the final image on the desired fine grid. 相似文献
11.
叠前逆时偏移在理论上是现行偏移方法中最为精确的一种成像方法,其实现过程中的核心步骤之一是波动方程的波场延拓,而波场延拓的本质是求解波动方程,所以精确、快速地求解波动方程对逆时偏移至关重要.本文采用一种基于时空域频散关系的有限差分方法来求解声波方程,分析其频散和稳定性,实现波场数值模拟,并将分析和模拟结果与传统有限差分法进行对比.分析结果和模型数值模拟结果都表明时空域有限差分法模拟精度更高、稳定性更好.将时空域高阶有限差分法应用到叠前逆时偏移波场延拓的方程求解中,然后再利用归一化互相关成像条件成像,理论模型数据偏移处理获得了精度更高的成像.同时,在逆时偏移波场延拓的实现中,采用自适应变长度的空间差分算子求解空间导数的有限差分策略,在不影响数值模拟和成像精度的前提下,有效地提高了计算效率. 相似文献
12.
Numerical implementation of the gradient of the cost function in a gradient‐based full‐ waveform inversion (FWI) is essentially a migration operator used in wave equation migration. In FWI, minimizing different data residual norms results in different weighting strategies of data residuals at receiver locations prior to back‐propagation into the medium. In this paper, we propose different scaling methods to the receiver wavefield and compare their performances. Using time‐domain reverse‐time migration (RTM), we show that compared to conventional algorithms, this type of scaling is able to significantly suppress non‐Gaussian noise, i.e., outliers. Our tests also show that scaling by its absolute norm produces better results than other approaches. 相似文献
13.
叠前逆时偏移是当前最为准确的地震成像方法,由于计算量大、存储量大等原因需要合适的实现策略和高效的计算平台.本文以高阶有限差分逆时偏移为基础,重点讨论了在GPU上实现需要解决的显存不足问题和人工边界问题.利用区域分解技术可以在当前GPU上高效地实现任意生产规模的三维逆时偏移成像,不会受到GPU显存规模的制约.常规最佳匹配层边界条件边界区域控制方程与内部区域差异较大,不适于GPU高速运算.本文在GPU上实现近似最佳匹配层(NPML)边界条件,使得高阶有限差分计算不需要分支判断,边界区域辅助波场的存储量也较低,保证了在GPU上进行波场传播的高效性.三维理论数据和实际资料成像结果表明了本文方法的正确性. 相似文献
14.
弹性波逆时偏移是一种高精度的复杂构造地震成像方法.然而,在传统的基于矩形网格离散化的逆时偏移中,介质界面通常会产生畸变.另外,因使用双程波动方程进行波场延拓,其产生的反射波会在成像过程中产生偏移假象.为解决这些问题,本文提出了一种拟空间域弹性波方程高阶交错网格有限差分格式,并给出了差分格式的稳定性条件,进而实现了高精度的拟空间域弹性波方程有限差分逆时偏移.模型实验表明,若在计算拟空间域采样间隔时引入速度界面信息,则拟空间域弹性波方程高阶交错网格有限差分逆时偏移能够避免常规弹性波方程逆时偏移中弯曲界面形态畸变问题;此外基于该方法进行波场延拓时可有效压制弯曲界面的假散射现象,并能有效压制层间反射波,因此可以减少剖面上的偏移假象,从而显著提高成像的质量.
相似文献15.
相较于单程波偏移算法而言,逆时偏移成像方法以其物理基础为依托优势,几十年来一直备受国内外地球物理学家的青睐.目前的逆时偏移(RTM)若直接采用双程波动方程进行延拓,尽管可以回避上下行波的分离处理,然就已有算法而言,其计算量和I/O(输入/输出)量却是最大的.针对此问题,本文在分析现行逆时偏移的多种算法基础上,提出利用CPU/GPU(中央处理器/图形处理器)作为数值计算核心,建立随机边界模型,从而克服存储I/O难题和提高计算效率.在实际的数据测试中,本文的方法可以大幅度的提高计算效率和减少存储单元,从而促使其高效地应用于生产实际. 相似文献
16.
This paper describes least‐squares reverse‐time migration. The method provides the exact adjoint operator pair for solving the linear inverse problem, thereby enhancing the convergence of gradient‐based iterative linear inversion methods. In this formulation, modified source wavelets are used to correct the source signature imprint in the predicted data. Moreover, a roughness constraint is applied to stabilise the inversion and reduce high‐wavenumber artefacts. It is also shown that least‐squares migration implicitly applies a deconvolution imaging condition. Three numerical experiments illustrate that this method is able to produce seismic reflectivity images with higher resolution, more accurate amplitudes, and fewer artefacts than conventional reverse‐time migration. The methodology is currently feasible in 2‐D and can naturally be extended to 3‐D when computational resources become more powerful. 相似文献
17.
Yanadet Sripanich Sergey Fomel Junzhe Sun Jiubing Cheng 《Geophysical Prospecting》2017,65(5):1231-1245
The goal of wave‐mode separation and wave‐vector decomposition is to separate a full elastic wavefield into three wavefields with each corresponding to a different wave mode. This allows elastic reverse‐time migration to handle each wave mode independently. Several of the previously proposed methods to accomplish this task require the knowledge of the polarisation vectors of all three wave modes in a given anisotropic medium. We propose a wave‐vector decomposition method where the wavefield is decomposed in the wavenumber domain via the analytical decomposition operator with improved computational efficiency using low‐rank approximations. The method is applicable for general heterogeneous anisotropic media. To apply the proposed method in low‐symmetry anisotropic media such as orthorhombic, monoclinic, and triclinic, we define the two S modes by sorting them based on their phase velocities (S1 and S2), which are defined everywhere except at the singularities. The singularities can be located using an analytical condition derived from the exact phase‐velocity expressions for S waves. This condition defines a weight function, which can be applied to attenuate the planar artefacts caused by the local discontinuity of polarisation vectors at the singularities. The amplitude information lost because of weighting can be recovered using the technique of local signal–noise orthogonalisation. Numerical examples show that the proposed approach provides an effective decomposition method for all wave modes in heterogeneous, strongly anisotropic media. 相似文献
18.
Directional‐oriented wavefield imaging: a new wave‐based subsurface illumination imaging condition for reverse time migration 下载免费PDF全文
The key objective of an imaging algorithm is to produce accurate and high‐resolution images of the subsurface geology. However, significant wavefield distortions occur due to wave propagation through complex structures and irregular acquisition geometries causing uneven wavefield illumination at the target. Therefore, conventional imaging conditions are unable to correctly compensate for variable illumination effects. We propose a generalised wave‐based imaging condition, which incorporates a weighting function based on energy illumination at each subsurface reflection and azimuth angles. Our proposed imaging kernel, named as the directional‐oriented wavefield imaging, compensates for illumination effects produced by possible surface obstructions during acquisition, sparse geometries employed in the field, and complex velocity models. An integral part of the directional‐oriented wavefield imaging condition is a methodology for applying down‐going/up‐going wavefield decomposition to both source and receiver extrapolated wavefields. This type of wavefield decomposition eliminates low‐frequency artefacts and scattering noise caused by the two‐way wave equation and can facilitate the robust estimation for energy fluxes of wavefields required for the seismic illumination analysis. Then, based on the estimation of the respective wavefield propagation vectors and associated directions, we evaluate the illumination energy for each subsurface location as a function of image depth point and subsurface azimuth and reflection angles. Thus, the final directional‐oriented wavefield imaging kernel is a cross‐correlation of the decomposed source and receiver wavefields weighted by the illuminated energy estimated at each depth location. The application of the directional‐oriented wavefield imaging condition can be employed during the generation of both depth‐stacked images and azimuth–reflection angle‐domain common image gathers. Numerical examples using synthetic and real data demonstrate that the new imaging condition can properly image complex wave paths and produce high‐fidelity depth sections. 相似文献
19.
Shaoyong Liu Zhe Yan Hanming Gu Yongjie Tang Chuncheng Liu 《Geophysical Prospecting》2019,67(3):496-507
In areas with strong velocity gradients, traditional reverse time migration based on cross-correlation imaging condition not only produces low-frequency noise but also generates diving wave artefacts. The artefacts caused by diving waves have no typical low-frequency characteristics and cannot be eliminated by simple high-pass filtering approaches. We apply the wave-field decomposition imaging condition to analyse the causes of false images in reverse time migration by decomposing the full wave-field into up-going and down-going components in the angle domain. We find that artificial diving wave imaging artefacts, which are generated by the cross-correlation between the up-going source and down-going receiver wave-fields in areas with strong velocity gradients, arise at large angles. We propose an efficient strategy by means of the wavelength-dependent smoothing operator to eliminate artefacts from artificial diving waves in reverse time migration. Specifically, the proposed method provides more reasonable down-going wave-fields in areas with sharp velocity constructs by considering the factor of varying seismic wavelengths during wave propagation, and the artificial components of diving waves are eliminated in a straightforward manner. Meanwhile, the other wave-field components that contribute to true subsurface images are minimally affected. Benefiting from a smoothed velocity, the proposed method can be adapted to the traditional reverse time migration imaging frame, which reveals significant implementation potential for the seismic exploration industry. A salt model is designed and included to demonstrate the effectiveness of our approach. 相似文献
20.
在沉积学中,可假设在相同时期的沉积层具有相近的物理性质和演化过程.因此,沿层传播的地震波和垂直于地层传播的地震波具有各向异性的特点.在纵波资料的处理中,考虑各向异性对逆时偏移的影响,通常假设介质的横波速度为零,这样可以得到纵波在TTI介质中的传播方程,但是该方程在实际计算中仍存在数值稳定性问题.本文加入横波分量可有效解决数值稳定性问题,并选取适当的横波速度减小对纵波成像的影响,实现地震波在TTI介质中的逆时偏移.实际测算表明,P-SV波的方程中包含横波分量,若假设SV的速度为零,则会导致方程的差分格式不稳定;若加入SV波,选择合适的SV波速度可以使SV波的全区各向异性和反射系数达到极小,并可有效的抑制SV波对纵波勘探的影响.本文的方法是一种稳定的TTI介质中的逆时偏移方法. 相似文献