首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre‐existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre‐existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single‐well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single‐well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real‐source data. By applying pre‐stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single‐well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single‐well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.  相似文献   

2.
Comparison of surface and borehole locations of induced seismicity   总被引:1,自引:0,他引:1  
Monitoring of induced microseismic events has become an important tool in hydraulic fracture diagnostics and understanding fractured reservoirs in general. We compare microseismic event and their uncertainties using data sets obtained with surface and downhole arrays of receivers. We first model the uncertainties to understand the effect of different acquisition geometries on location accuracy. For a vertical array of receivers in a single monitoring borehole, we find that the largest part of the final location uncertainty is related to estimation of the backazimuth. This is followed by uncertainty in the vertical position and radial distance from the receivers. For surface monitoring, the largest uncertainty lies in the vertical position due to the use of only a single phase (usually P‐wave) in the estimation of the event location. In surface monitoring results, lateral positions are estimated robustly and are not sensitive to the velocity model. In this case study, we compare event location solutions from two catalogues of microseismic events; one from a downhole array and the second from a surface array of 1C geophone. Our results show that origin time can be reliably used to find matching events between the downhole and surface catalogues. The locations of the corresponding events display a systematic shift consistent with a poorly calibrated velocity model for downhole dataset. For this case study, locations derived from surface monitoring have less scatter in both vertical and horizontal directions.  相似文献   

3.
Microseismic monitoring in the oil and gas industry commonly uses migration‐based methods to locate very weak microseismic events. The objective of this study is to compare the most popular migration‐based methods on a synthetic dataset that simulates a strike‐slip source mechanism event with a low signal‐to‐noise ratio recorded by surface receivers (vertical components). The results show the significance of accounting for the known source mechanism in the event detection and location procedures. For detection and location without such a correction, the ability to detect weak events is reduced. We show both numerically and theoretically that neglecting the source mechanism by using only absolute values of the amplitudes reduces noise suppression during stacking and, consequently, limits the possibility to retrieve weak microseismic events. On the other hand, even a simple correction to the data polarization used with otherwise ineffective methods can significantly improve detections and locations. A simple stacking of the data with a polarization correction provided clear event detection and location, but even better results were obtained for those data combined with methods that are based on semblance and cross‐correlation.  相似文献   

4.
微地震事件初至拾取SLPEA算法   总被引:4,自引:1,他引:4       下载免费PDF全文
微地震事件初至拾取是微地震数据处理的关键步骤之一.实际微地震监测资料中存在大量低信噪比事件,而传统方法对这些事件的应用效果并不理想.为了克服传统方法抗噪性弱的缺点,本文通过综合地震信号与环境噪声在振幅、偏振以及统计特征等方面的存在的差异,设计了一种针对低信噪比微地震事件的初至拾取方法——SLPEA算法.为了检验本文方法的可行性和有效性,分别对模型数据和实际资料进行了处理,并将处理结果与传统方法及手工拾取的结果进行了对比.分析表明,利用本文方法得到的初至到时与手工拾取结果的绝对误差平均值仅为1.33×10-3s,小于3个采样点;方差为3.21×10-6s2;初至到时在手工拾取结果±0.005 s误差范围内的个数占总数的95.8%.这些参数值均优于传统方法的同类参数,证明了本文方法的可靠性.  相似文献   

5.
The study of seismic anisotropy in exploration seismology is gaining interest as it provides valuable information about reservoir properties and stress directions. In this study we estimate anisotropy in a petroleum field in Oman using observations of shear‐wave splitting from microseismic data. The data set was recorded by arrays of borehole geophones deployed in five wells. We analyse nearly 3400 microearthquakes, yielding around 8500 shear‐wave splitting measurements. Stringent quality control reduces the number of reliable measurements to 325. Shear‐wave splitting modelling in a range of rock models is then used to guide the interpretation. The difference between the fast and slow shear‐wave velocities along the raypath in the field ranges between 0–10% and it is controlled both by lithology and proximity to the NE‐SW trending graben fault system that cuts the field formations. The anisotropy is interpreted in terms of aligned fractures or cracks superimposed on an intrinsic vertical transversely isotropic (VTI) rock fabric. The highest magnitudes of anisotropy are within the highly fractured uppermost unit of the Natih carbonate reservoir. Anisotropy decreases with depth, with the lowest magnitudes found in the deep part of the Natih carbonate formation. Moderate amounts of anisotropy are found in the shale cap rock. Anisotropy also varies laterally with the highest anisotropy occurring either side of the south‐eastern graben fault. The predominant fracture strikes, inferred from the fast shear‐wave polarizations, are consistent with the trends of the main faults (NE‐SW and NW‐SE). The majority of observations indicate subvertical fracture dip (>70° ). Cumulatively, these observations show how studies of shear‐wave splitting using microseismic data can be used to characterize fractures, important information for the exploitation of many reservoirs.  相似文献   

6.
葛奇鑫  韩立国 《地球物理学报》2019,62(10):3988-3999
现有的微震记录直接成像方法是将微震记录既当作入射记录,也当作散射记录,从而实现偏移成像.但此方法并不能突出透射波所携带的来自震源下方的深层散射波信息.本文在假设已知微震位置与子波的前提下,提出了对微震下方构造进行逆时偏移的成像方法.该方法类似于常规的逆时偏移,只是震源位置在地下.这使得在成像时,地下更深部的入射波场相比震源在地表时会更为精确,因此能够获得更加准确的成像结果.该方法会给成像结果带来一种尾波高频干扰:地下的震源发出的上行波与上方介质作用后,所产生的多级散射波会干扰反传波场.对此,在成像过程中,对入射场和散射场都进行左右行波分离,以压制该噪声.而在子波信息未知,无法重构入射场时,使用了激发时间成像条件,也能够实现同等效果的偏移成像,且不会出现尾波高频干扰.利用数值实验验证了本文方法的有效性.  相似文献   

7.
The hydrocarbon industry is moving increasingly towards tight sandstone and shale gas resources – reservoirs that require fractures to be produced economically. Therefore, techniques that can identify sets of aligned fractures are becoming more important. Fracture identification is also important in the areas of coal bed methane production, carbon capture and storage (CCS), geothermal energy, nuclear waste storage and mining. In all these settings, stress and pore pressure changes induced by engineering activity can generate or reactivate faults and fractures. P‐ and S‐waves are emitted by such microseismic events, which can be recorded on downhole geophones. The presence of aligned fracture sets generates seismic anisotropy, which can be identified by measuring the splitting of the S‐waves emitted by microseismic events. The raypaths of the S‐waves will have an arbitrary orientation, controlled by the event and geophone locations, meaning that the anisotropy system may only be partly illuminated by the available arrivals. Therefore to reliably interpret such splitting measurements it is necessary to construct models that compare splitting observations with modelled values, allowing the best fitting rock physics parameters to be determined. Commonly, splitting measurements are inverted for one fracture set and rock fabrics with a vertical axis of symmetry. In this paper we address the challenge of identifying multiple aligned fracture sets using splitting measured on microseismic events. We analyse data from the Weyburn CCS‐EOR reservoir, which is known to have multiple fracture sets, and from a hydraulic fracture stimulation, where it is believed that only one set is present. We make splitting measurements on microseismic data recorded on downhole geophone arrays. Our inversion technique successfully discriminates between the single and multiple fracture cases and in all cases accurately identifies the strikes of fracture sets previously imaged using independent methods (borehole image logs, core samples, microseismic event locations). We also generate a synthetic example to highlight the pitfalls that can be encountered if it is assumed that only one fracture set is present when splitting data are interpreted, when in fact more than one fracture set is contributing to the anisotropy.  相似文献   

8.
微地震事件初至拾取是井下微地震监测数据处理的关键步骤之一.初至误差的存在会使微地震震源定位结果产生较大偏差,进而影响后续的压裂裂缝解释.通常初至拾取过程对所有的微地震事件选择相同的特征函数并采用一致的拾取参数进行统一处理,然而当事件的能量、震源机制、传播路径以及背景噪声等存在明显差异时,所得初至拾取结果差别显著.为了提高微地震事件初至拾取标准一致性,本文提出基于波形相似特征的初至拾取及全局校正方法.该方法首先利用互相关函数对每个事件内的各道记录进行时差校正,得到初始初至信息并形成叠加道,再对所有事件的叠加道进行全局互相关得到事件间初至相对校正量,最终初至结果可以通过各个事件的初始初至信息与其相对校正量相加得到.方法将所有微地震事件初至结果作为一个整体处理,从而能够克服常规方法初至拾取标准一致性差的缺陷.实际资料处理结果表明,相比于常规方法,该方法可以有效提高事件初至拾取和定位结果的一致性.  相似文献   

9.
程前  魏伟  符力耘 《地球物理学报》2022,65(8):3213-3228

微地震定位是非常规和低渗透油气勘探开发和地下工程安全监测的关键环节,其准确性是实现油气储层实时刻画和工程灾害监测预警的重要基础.由于微地震信号具有能量弱、频率高、信噪比低的特点,微地震定位精度易受到采集观测系统布设位置的影响,尤其在井下受限空间与高温高压环境中.基于此,本文提出了一种基于逆时成像的井下微地震采集定位精度分析方法,能定量预测实际采集观测系统布设方案在水平和深度方向上的定位偏差和不确定性.区别于传统定位精度分析方法,该方法基于波形而非走时,适用于复杂非均匀介质,同时考虑了信噪比和震源机制对定位精度的影响.均匀和非均匀介质下的实例应用结果均表明,该方法能有效评价微地震采集方案的预期定位精度,进而反馈采集参数设计,从数据采集的源头改善复杂介质条件下的微地震定位效果.

  相似文献   

10.
Microseismic monitoring is an approach for mapping hydraulic fracturing. Detecting the accurate locations of microseismic events relies on an accurate velocity model. The one‐dimensional layered velocity model is generally obtained by model calibration from inverting perforation data. However, perforation shots may only illuminate the layers between the perforation shots and the recording receivers with limited raypath coverage in a downhole monitoring problem. Some of the microseismic events may occur outside of the depth range of these layers. To derive an accurate velocity model covering all of the microseismic events and locating events at the same time, we apply the cross double‐difference method for the simultaneous inversion of a velocity model and event locations using both perforation shots and microseismic data. The cross double‐difference method could provide accurate locations in both the relative and absolute sense, utilizing cross traveltime differences between P and S phases over different events. At the downhole monitoring scale, the number of cross traveltime differences is sufficiently large to constrain events locations and velocity model as well. In this study, we assume that the layer thickness is known, and velocities of P‐ and S‐wave are inverted. Different simultaneous inversion methods based on the Geiger's, double‐difference, and cross double‐difference algorithms have been compared with the same input data. Synthetic and field data experiments suggest that combining both perforation shots and microseismic data for the simultaneous cross double‐difference inversion of the velocity model and event locations is available for overcoming the trade‐offs in solutions and producing reliable results.  相似文献   

11.
李稳  刘伊克  刘保金 《地球物理学报》2016,59(10):3869-3882
井下微震监测获得的地震记录往往包含大量的噪声,记录信噪比很低.有效地震信号的识别与提取是进行后续地震定位等工作之前需要优先解决的问题.经过研究发现,井下水压裂微地震信号具有稀疏分布的特征,而井下环境噪声则具有更多的Gaussian分布特征.为此,本文提出将图像处理领域适宜于稀疏分布信号降噪处理的稀疏码收缩方法应用于井下微震监测数据处理.为解决需要利用与待处理数据中有效信号成分具有相似分布特征的无噪信号序列估算正交基以及计算效率等问题,将原方法与小波变换理论相结合.即通过优选小波基函数作为正交基进行小波变换将信号分解为不同级的小波系数,利用稀疏码收缩方法中对稀疏编码施加的非线性收缩方式作为阈值准则对小波系数进行改造.通过多方面的数值实验证明了该方法在处理地震子波及井下微地震信号方面准确可靠.含噪记录经过处理后有效地震信号的到时、波形、时频谱特征等均能得到良好的识别和恢复.并且该方法具有很强的抗噪能力,当信噪比低至-20~-30 db时,仍然能够发挥作用.在处理大量实际井下微震监测数据的过程中,面对多种复杂情况,本方法展现出了计算效率高、计算结果可靠、应用简单等优势,证明了其本身具有实际应用价值,值得进一步的研究和推广.  相似文献   

12.
Distributed acoustic sensing is a growing technology that enables affordable downhole recording of strain wavefields from microseismic events with spatial sampling down to ∼1 m. Exploiting this high spatial information density motivates different detection approaches than typically used for downhole geophones. A new machine learning method using convolutional neural networks is described that operates on the full strain wavefield. The method is tested using data recorded in a horizontal observation well during hydraulic fracturing in the Eagle Ford Shale, Texas, and the results are compared to a surface geophone array that simultaneously recorded microseismic activity. The neural network was trained using synthetic microseismic events injected into real ambient noise, and it was applied to detect events in the remaining data. There were 535 detections found and no false positives. In general, the signal-to-noise ratio of events recorded by distributed acoustic sensing was lower than the surface array and 368 of 933 surface array events were found. Despite this, 167 new events were found in distributed acoustic sensing data that had no detected counterpart in the surface array. These differences can be attributed to the different detection threshold that depends on both magnitude and distance to the optical fibre. As distributed acoustic sensing data quality continues to improve, neural networks offer many advantages for automated, real-time microseismic event detection, including low computational cost, minimal data pre-processing, low false trigger rates and continuous performance improvement as more training data are acquired.  相似文献   

13.
水力压裂对速度场及微地震定位的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
水力压裂是页岩气开发过程中的核心增产技术,微地震则广泛用于压裂分析、水驱前缘监测和储层描述.微地震反演过程中,用于反演的速度模型往往基于测井、地震或标定炮资料构建,忽略了压裂过程中裂缝及孔隙流体压力变化对地层速度的影响.本文首先基于物质守恒、渗流理论和断裂力学模拟三维水力压裂过程,得到地下裂缝发育特征和孔隙压力分布.继而根据Coates-Schoenberg方法和裂缝柔量参数计算裂缝和孔隙压力对速度场的影响,得到压裂过程中的实时速度模型.最后利用三维射线追踪方法正演微地震走时和方位信息,并采用常规微地震定位方法反演震源位置及进行误差分析.数值模拟结果表明,检波器空间分布影响定位精度,常规方法的定位误差随射线路径在压裂带中传播距离增加而变大,且不同压裂阶段的多点反演法与单点极化法精度相当.  相似文献   

14.
We investigate fracture‐induced attenuation anisotropy in a cluster of events from a microseismic dataset acquired during hydraulic fracture stimulation. The dataset contains 888 events of magnitude ?3.0 to 0.0. We use a log‐spectral‐amplitude‐ratio method to estimate change in over a half‐hour time period where fluid is being injected and an increase in fracturing from S‐wave splitting analysis has been previously inferred. A Pearson's correlation analysis is used to assess whether or not changes in attenuation with time are statistically significant. P‐waves show no systematic change in during this time. In contrast, S‐waves polarised perpendicular to the fractures show a clear and statistically significant increase with time, whereas S‐waves polarised parallel to the fractures show a weak negative trend. We also compare between the two S‐waves, finding an increase in with time. A poroelastic rock physics model of fracture‐induced attenuation anisotropy is used to interpret the results. This model suggests that the observed changes in t* are related to an increase in fracture density of up to 0.04. This is much higher than previous estimates of 0.025 ± 0.002 based on S‐wave velocity anisotropy, but there is considerably more scatter in the attenuation measurements. This could be due to the added sensitivity of attenuation measurement to non‐aligned fractures, fracture shape, and fluid properties. Nevertheless, this pilot study shows that attenuation measurements are sensitive to fracture properties such as fracture density and aspect ratio.  相似文献   

15.
全干涉成像的微地震定位方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文

基于偏移成像的微地震定位方法由于可避免走时拾取误差以及可实现自动化定位等优点被广泛应用.绕射叠加方法将能量沿走时曲线聚焦到空间网格点上,进行成像时需要搜索发震时刻.干涉成像方法利用互相关提取的走时差信息可避免搜索发震时刻,但定位结果受数据信噪比的影响较大.为了进一步提高干涉成像法的定位精度,本文提出一种同时使用互相关和自相关道集的全干涉成像方法,增加的自相关道集提取的S-P走时差可降低震源-检波器方向的定位误差,提高定位精度.单井监测的理论测试和实际数据的研究结果表明,全干涉成像的定位精度高于仅使用互相关道集的干涉成像方法,同时计算效率高于绕射叠加方法.

  相似文献   

16.
We study the stability of source mechanisms inverted from data acquired at surface and near‐surface monitoring arrays. The study is focused on P‐wave data acquired on vertical components, as this is the most common type of acquisition. We apply ray modelling on three models: a fully homogeneous isotropic model, a laterally homogeneous isotropic model and a laterally homogeneous anisotropic model to simulate three commonly used models in inversion. We use geometries of real arrays, one consisting in surface receivers and one consisting in ‘buried’ geophones at the near‐surface. Stability was tested for two of the frequently observed source mechanisms: strike‐slip and dip‐slip and was evaluated by comparing the parameters of correct and inverted mechanisms. We assume these double‐couple source mechanisms and use quantitatively the inversion allowing non‐double‐couple components to measure stability of the inversion. To test the robustness we inverted synthetic amplitudes computed for a laterally homogeneous isotropic model and contaminated with noise using a fully homogeneous model in the inversion. Analogously amplitudes computed in a laterally homogeneous anisotropic model were inverted in all three models. We show that a star‐like surface acquisition array provides very stable inversion up to a very high level of noise in data. Furthermore, we reveal that strike‐slip inversion is more stable than dip‐slip inversion for the receiver geometries considered here. We show that noise and an incorrect velocity model may result in narrow bands of source mechanisms in Hudson's plots.  相似文献   

17.

利用密集台阵对水力压裂微地震进行监测将有助于优化储层压裂、揭示断层活化.为满足密集台阵海量采集数据的处理需求, 本文建立了一种综合运用多种机器学习方法和台阵相关性的、无需人工干预的自动处理流程, 从而能够快速得到高质量的密集台阵震相到时目录.该综合策略包括: (1)利用迁移学习在连续波形中快速检测地震事件; (2)利用U型神经网络PhaseNet自动拾取P波、S波震相; (3)利用三重线性剔除法, 结合密集台阵到时相关性剔除异常到时数据和地震事件; (4)利用K-means和SVM两类机器学习算法, 进一步区分发震时刻接近的多个地震事件, 减小事件漏拾率.通过将该流程应用于四川盆地长宁—昭通页岩气开发区微地震监测数据, 并将自动处理结果与人工拾取结果进行比对发现, 二者在震级测定、定位以及走时成像结果等方面具有很好的一致性, 表明本文处理流程结果精度可达到手动处理精度.本文结果为密集台阵地震监测数据的高效、高精度处理提供了新思路.

  相似文献   

18.
Noise suppression or signal‐to‐noise ratio enhancement is often desired for better processing results from a microseismic dataset. In this paper, a polarization–linearity and time–frequency‐thresholding‐based approach is used for denoising waveforms. A polarization–linearity filter is initially applied to preserve the signal intervals and suppress the noise amplitudes. This is followed by time–frequency thresholding for further signal‐to‐noise ratio enhancement in the S transform domain. The parameterisation for both polarization filter and time–frequency thresholding is also discussed. Finally, real microseismic data examples are shown to demonstrate the improvements in processing results when denoised waveforms are considered in the workflow. The results indicate that current denoising approach effectively suppresses the background noise and preserves the vector fidelity of signal waveform. Consequently, the quality of event detection, arrival‐time picking, and hypocenter location improves.  相似文献   

19.
The knowledge of the velocity model in microseismic jobs is critical to achieving statistically reliable microseismic event locations. The design of microseismic networks and the limited sources for calibration do not allow for a full tomographic inversion. We propose optimizing a priori velocity models using a few active shots and a non‐linear inversion, suitable to poorly constrained systems. The considered models can be described by several layers with different P‐ and S‐wave velocities. The velocities may be constant or have 3D gradients; the layer interfaces may be simple dipping planes or more complex 3D surfaces. In this process the P‐ and S‐ wave arrival times and polarizations measured on the seismograms constitute the observed data set. They are used to estimate two misfit functions: i) one based on the measurement residuals and ii) one based on the inaccuracy of the source relocation. These two functions are minimized thanks to a simulated annealing scheme, which decreases the risk of converging to a local solution within the velocity model. The case study used to illustrate this methodology highlights the ability of this technique to constrain a velocity model with dipping layers. This was performed by jointly using sixteen perforation shots recorded during a multi‐stage fracturing operation from a single string of 3C‐receivers. This decreased the location inaccuracies and the residuals by a factor of six. In addition, the retrieved layer dip was consistent with the pseudo‐horizontal trajectories of the wells and the background information provided by the customer. Finally, the theoretical position of each calibration shot was contained in the uncertainty domain of the relocation of each shot. In contrast, single‐stage inversions provided different velocity models that were neither consistent between each other nor with the well trajectories. This example showed that it is essential to perform a multi‐stage inversion to derive a better updated velocity model.  相似文献   

20.

水力压裂是进行非常规油气储层改造,提高单井产量的必备技术.为了实现安全、高效压裂,通常使用地震检波器进行微地震监测和压裂效果评估.一般情况下,井中检波器数量较少且采集方位角较窄,难以获得准确的微地震震源位置,导致无法准确评估储层改造情况.通过将光纤永置式布设于页岩气储层水平井的套管外,我们实现了基于水平井光纤分布式声波传感(Distributed Acoustic Sensing,DAS)的全井段、宽方位、高密度水力压裂过程微振动实时监测,并进一步使用震源扫描算法对监测到的微地震有效事件进行震源位置成像.合成数据算例表明,与常规检波器技术相比,DAS技术具有以下两点优势:(1)DAS技术实现了水平井全井段监测,显著增加了监测数据的采集方位角,可以有效提升震源位置成像的空间分辨率;(2)DAS技术显著增加了监测数据的空间采样密度,可以有效提高低信噪比监测数据的震源位置成像精度.昭通页岩气储层水力压裂监测数据算例进一步验证了DAS技术的有效性,表明了宽方位、高密度的DAS数据可以获得高分辨率的震源位置成像结果,有助于提高储层改造效果评估的准确性.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号