首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mud volcanism is commonly observed in Azerbaijan and the surrounding South Caspian Basin. This natural phenomenon is very similar to magmatic volcanoes but differs in one considerable aspect: Magmatic volcanoes are generally the result of ascending molten rock within the Earth's crust, whereas mud volcanoes are characterised by expelling mixtures of water, mud, and gas. The majority of mud volcanoes have been observed on ocean floors or in deep sedimentary basins, such as those found in Azerbaijan. Furthermore, their occurrences in Azerbaijan are generally closely associated with hydrocarbon reservoirs and are therefore of immense economic and geological interest. The broadside long‐offset transient electromagnetic method and the central‐loop transient electromagnetic method were applied to study the inner structure of such mud volcanoes and to determine the depth of a resistive geological formation that is predicted to contain the majority of the hydrocarbon reservoirs in the survey area. One‐dimensional joint inversion of central‐loop and long‐offset transient electromagnetic data was performed using the inversion schemes of Occam and Marquardt. By using the joint inversion models, a subsurface resistivity structure ranging from the surface to a depth of approximately 7 km was determined. Along a profile running perpendicular to the assumed strike direction, lateral resistivity variations could only be determined in the shallow depth range using the transient electromagnetic data. An attempt to resolve further two‐dimensional/three‐dimensional resistivity structures, representing possible mud migration paths at large depths using the long‐offset transient electromagnetic data, failed. Moreover, the joint inversion models led to ambiguous results regarding the depth and resistivity of the hydrocarbon target formation due to poor resolution at great depths (>5 km). Thus, 1D/2D modelling studies were subsequently performed to investigate the influence of the resistive terminating half‐space on the measured long‐offset transient electromagnetic data. The 1D joint inversion models were utilised as starting models for both the 1D and 2D modelling studies. The results tend to show that a resistive terminating half‐space, implying the presence of the target formation, is the favourable geological setting. Furthermore, the 2D modelling study aimed to fit all measured long‐offset transient electromagnetic Ex transients along the profile simultaneously. Consequently, 3125 2D forward calculations were necessary to determine the best‐fit resistivity model. The results are consistent with the 1D inversion, indicating that the data are best described by a resistive terminating half‐space, although the resistivity and depth cannot be determined clearly.  相似文献   

2.
Time‐domain marine controlled source electromagnetic methods have been used successfully for the detection of resistive targets such as hydrocarbons, gas hydrate, or marine groundwater aquifers. As the application of time‐domain marine controlled source electromagnetic methods increases, surveys in areas with a strong seabed topography are inevitable. In these cases, an important question is whether bathymetry information should be included in the interpretation of the measured electromagnetic field or not. Since multi‐dimensional inversion is still not common in time‐domain marine controlled source electromagnetic methods, bathymetry effects on the 1D inversion of single‐offset and multi‐offset joint inversions of time‐domain controlled source electromagnetic methods data are investigated. We firstly used an adaptive finite element algorithm to calculate the time‐domain controlled source electromagnetic methods responses of 2D resistivity models with seafloor topography. Then, 1D inversions are applied on the synthetic data derived from marine resistivity models, including the topography in order to study the possible topography effects on the 1D interpretation. To evaluate the effects of topography with various steepness, the slope angle of the seabed topography is varied in the synthetic modelling studies for deep water (air interaction is absent or very weak) and shallow water (air interaction is dominant), respectively. Several different patterns of measuring configurations are considered, such as the systems adopting nodal receivers and the bottom‐towed system. According to the modelling results for deep water when air interaction is absent, the 2D topography can distort the measured electric field. The distortion of the data increases gradually with the enlarging of the topography's slope angle. In our test, depending on the configuration, the seabed topography does not affect the 1D interpretation significantly if the slope angle is less or around 10°. However, if the slope angle increases to 30° or more, it is possible that significant artificial layers occur in inversion results and lead to a wrong interpretation. In a shallow water environment with seabed topography, where the air interaction dominates, it is possible to uncover the true subsurface resistivity structure if the water depth for the 1D inversion is properly chosen. In our synthetic modelling, this scheme can always present a satisfactory data fit in the 1D inversion if only one offset is used in the inversion process. However, the determination of the optimal water depth for a multi‐offset joint inversion is challenging due to the various air interaction for different offsets.  相似文献   

3.
Very early times in the order of 2–3 μs from the end of the turn‐off ramp for time‐domain electromagnetic systems are crucial for obtaining a detailed resolution of the near‐surface geology in the depth interval 0–20 m. For transient electromagnetic systems working in the off time, an electric current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled by the geometry of the transmitter loop, we denote it the ‘Coil Response’. The modelling of a helicopter‐borne time‐domain system by an equivalent electronic circuit shows that the time decay of the coil response remains identical whatever the position of the receiver loop, which is confirmed by field measurements. The modelling also shows that the coil response has a theoretical zero location and positioning the receiver coil at the zero location eliminates the coil response completely. However, spatial variations of the coil response around the zero location are not insignificant and even a few cm deformation of the carrier frame will introduce a small coil response. Here we present an approach for subtracting the coil response from the data by measuring it at high altitudes and then including an extra shift factor into the inversion scheme. The scheme is successfully applied to data from the SkyTEM system and enables the use of very early time gates, as early as 2–3 μs from the end of the ramp, or 5–6 μs from the beginning of the ramp. Applied to a large‐scale airborne electromagnetic survey, the coil response compensation provides airborne electromagnetic methods with a hitherto unseen good resolution of shallow geological layers in the depth interval 0–20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.  相似文献   

4.

半航空瞬变电磁法(SATEM)因其具有工作效率高、探测成本低等优势, 成为了一种发展迅速的新兴地球物理探测技术.基于一维反演的SATEM数据处理方法难以满足复杂地质条件下精细解释的需求.同时, 采用单一的探测方式, 存在探测能力有限、反演多解性强等问题.本文开发了适用于地面瞬变电磁法和SATEM的三维反演及联合反演算法.正演采用基于非结构化四面体网格的矢量有限元法, 可以精确模拟地形和复杂地电结构.反演采用具有较高收敛速度的高斯-牛顿法.通过对理论模型分别进行地面瞬变电磁、半航空瞬变电磁单独反演及其联合反演, 验证了反演算法的有效性.通过对比不同装置的单独反演结果, 以及单独反演与联合反演结果, 分析了不同装置的探测能力, 并展示了联合反演可以有效压制反演多解性、提高反演结果分辨率的优势.

  相似文献   

5.
冯杰  欧洋  赵勇  贾定宇  李洋  高文利 《地球物理学报》2019,62(10):3686-3698

井中磁测在铁矿等磁性金属矿床勘查中具有举足轻重的作用.针对磁性金属矿床深部资源勘查中存在的有效信号弱、矿体形态复杂等技术难题,本文利用井中三分量磁测资料和地面磁测资料直接反演地下空间磁化率的分布情况,充分发挥纵、横向分辨率高的优势,通过磁化率的变化来确定矿(化)体的范围.分析了磁化率和磁场HaxHayZa、ΔT各参量之间的关系,导出了磁化率反演方程;将钻孔编录、磁化率测井等结果作为约束条件构建了目标函数.以组合倾斜板状体模型为例,验证了方法的有效性,并在青海野马泉铁多金属矿区开展应用试验,试验结果与已有地质资料基本一致.该方法有效抑制了因反演数据源单一、缺乏约束条件而造成反演结果的多解性,实现了磁测资料的精细反演解释,为查明地下矿体空间位置、形态及规模,提高找矿效果,提供了一种新的解决方案.

  相似文献   

6.

为解决地球物理反演中多解性的问题,综合多种地球物理信息的联合反演受到了广泛的关注.本文依据不同地球物理响应可能由相同异常体引起,而不同地球物理分布参数之间存在相关性等特点,提出了一种基于局部Pearson相关系数约束的联合反演方法.该方法假设每个局部区域模型参数的分布具有线性相关特性,在拟合不同类型观测数据时,对局部模型参数施加相关性约束,进行联合反演以减少多解性.本文采用交替迭代联合反演流程,改善了同一目标函数下联合反演收敛性和速度问题.基于新的联合反演方法和流程,我们测试了三维大地电磁和重力仿真数据的联合反演.结果表明,本文提出的基于局部相关性约束的联合反演方法,能充分利用大地电磁和重力观测数据信息,有效改善单一地球物理反演收敛性和多解性的问题,反演效果得到明显提升.

  相似文献   

7.

为了降低单一地球物理方法反演的多解性及受噪声的影响程度,本文围绕重力、磁法和大地电磁法开展了三维联合反演的研究.重、磁采用基于对数障碍法的正则化反演算法,大地电磁使用limited-memory Broyden-Fletcher-Goldfarb-Shanno(L-BFGS)反演算法,引入交叉梯度函数实现了三种物性结构的相互耦合,最终开发出一套重磁电三维联合反演算法,并实现MPI并行加速计算.通过理论模型算例验证了算法的准确性,结果表明:不论是单棱柱体模型还是组合棱柱体模型,联合反演结果相较单独反演对于异常体的空间形态刻画以及物性数值恢复具有较好的提升;单棱柱体模型算例使得异常体的物性参数(密度、磁化率和电阻率)更加接近于真实的物性参数;组合棱柱体模型的联合反演结果不仅仅消除了围岩物性参数的假异常,而且还增强了异常体边界结构的恢复程度.

  相似文献   

8.
A robust metric of data misfit such as the ?1‐norm is required for geophysical parameter estimation when the data are contaminated by erratic noise. Recently, the iteratively re‐weighted and refined least‐squares algorithm was introduced for efficient solution of geophysical inverse problems in the presence of additive Gaussian noise in the data. We extend the algorithm in two practically important directions to make it applicable to data with non‐Gaussian noise and to make its regularisation parameter tuning more efficient and automatic. The regularisation parameter in iteratively reweighted and refined least‐squares algorithm varies with iteration, allowing the efficient solution of constrained problems. A technique is proposed based on the secant method for root finding to concentrate on finding a solution that satisfies the constraint, either fitting to a target misfit (if a bound on the noise is available) or having a target size (if a bound on the solution is available). This technique leads to an automatic update of the regularisation parameter at each and every iteration. We further propose a simple and efficient scheme that tunes the regularisation parameter without requiring target bounds. This is of great importance for the field data inversion where there is no information about the size of the noise and the solution. Numerical examples from non‐stationary seismic deconvolution and velocity‐stack inversion show that the proposed algorithm is efficient, stable, and robust and outperforms the conventional and state‐of‐the‐art methods.  相似文献   

9.
Z‐axis tipper electromagnetic and broadband magnetotelluric data were used to determine three‐dimensional electrical resistivity models of the Morrison porphyry Cu–Au–Mo deposit in British Columbia. Z‐axis tipper electromagnetic data are collected with a helicopter, thus allowing rapid surveys with uniform spatial sampling. Ground‐based magnetotelluric surveys can achieve a greater exploration depth than Z‐axis tipper electromagnetic surveys, but data collection is slower and can be limited by difficult terrain. The airborne Z‐axis tipper electromagnetic tipper data and the ground magnetotelluric tipper data show good agreement at the Morrison deposit despite differences in the data collection method, spatial sampling, and collection date. Resistivity models derived from individual inversions of the Z‐axis tipper electromagnetic tipper data and magnetotelluric impedance data contain some similar features, but the Z‐axis tipper electromagnetic model appears to lack resolution below a depth of 1 km, and the magnetotelluric model suffers from non‐uniform and relatively sparse spatial sampling. The joint Z‐axis tipper electromagnetic inversion solves these issues by combining the dense spatial sampling of the airborne Z‐axis tipper electromagnetic technique and the deeper penetration of the lower frequency magnetotelluric data. The resulting joint resistivity model correlates well with the known geology and distribution of alteration at the Morrison deposit. Higher resistivity is associated with the potassic alteration zone and volcanic country rocks, whereas areas of lower resistivity agree with known faults and sedimentary units. The pyrite halo and ≥0.3% Cu zone have the moderate resistivity that is expected of disseminated sulphides. The joint Z‐axis tipper electromagnetic inversion provides an improved resistivity model by enhancing the lateral and depth resolution of resistivity features compared with the individual Z‐axis tipper electromagnetic and magnetotelluric inversions. This case study shows that a joint Z‐axis tipper electromagnetic–magnetotelluric approach effectively images the interpreted mineralised zone at the Morrison deposit and could be beneficial in exploration for disseminated sulphides at other porphyry deposits.  相似文献   

10.
重震联合反演是多地球物理数据联合反演的重要分支.通过调研国内外重震联合方面经典和最新文献,从模型参数化、联合数据类型、反演的实现和结果评价、优势及应用等多个角度对重震联合框架和新进展进行了介绍.相比于单数据集反演,重震联合反演在减弱多解性、提高物性分辨率、提高成像质量、岩性分类和地质解释等诸多方面都具有独特优势.目前,重震联合方法和技术还处在发展阶段,在多类型数据的结合、反演及定量评价、加强实际应用等方面发展空间还很大.最后,提出了重震联合方面值得关注的几点问题和可能的发展方向.  相似文献   

11.
The accurate estimation of sub‐seafloor resistivity features from marine controlled source electromagnetic data using inverse modelling is hindered due to the limitations of the inversion routines. The most commonly used one‐dimensional inversion techniques for resolving subsurface resistivity structures are gradient‐based methods, namely Occam and Marquardt. The first approach relies on the smoothness of the model and is recommended when there are no sharp resistivity boundaries. The Marquardt routine is relevant for many electromagnetic applications with sharp resistivity contrasts but subject to the appropriate choice of a starting model. In this paper, we explore the ability of different 1D inversion schemes to derive sub‐seafloor resistivity structures from time domain marine controlled source electromagnetic data measured along an 8‐km‐long profile in the German North Sea. Seismic reflection data reveal a dipping shallow amplitude anomaly that was the target of the controleld source electromagnetic survey. We tested four inversion schemes to find suitable starting models for the final Marquardt inversion. In this respect, as a first scenario, Occam inversion results are considered a starting model for the subsequent Marquardt inversion (Occam–Marquardt). As a second scenario, we employ a global method called Differential Evolution Adaptive Metropolis and sequentially incorporate it with Marquardt inversion. The third approach corresponds to Marquardt inversion introducing lateral constraints. Finally, we include the lateral constraints in Differential Evolution Adaptive Metropolis optimization, and the results are sequentially utilized by Marquardt inversion. Occam–Marquardt may provide accurate estimation of the subsurface features, but it is dependent on the appropriate conversion of different multi‐layered Occam model to an acceptable starting model for Marquardt inversion, which is not straightforward. Employing parameter spaces, the Differential Evolution Adaptive Metropolis approach can be pertinent to determine Marquardt a priori information; nevertheless, the uncertainties in Differential Evolution Adaptive Metropolis optimization will introduce some inaccuracies in Marquardt inversion results. Laterally constrained Marquardt may be promising to resolve sub‐seafloor features, but it is not stable if there are significant lateral changes of the sub‐seafloor structure due to the dependence of the method to the starting model. Including the lateral constraints in Differential Evolution Adaptive Metropolis approach allows for faster convergence of the routine with consistent results, furnishing more accurate estimation of a priori models for the subsequent Marquardt inversion.  相似文献   

12.
SOTEM数据一维OCCAM反演及其应用于三维模型的效果   总被引:6,自引:0,他引:6       下载免费PDF全文

本文基于垂直磁场分量研究了SOTEM数据的一维OCCAM反演方法,并将其应用于理论三维数据及野外实测数据的反演.对于大部分一维模型,OCCAM反演可取得较好的反演效果,且反演结果不依赖于偏移距;噪声对SOTEM数据的OCCAM反演具有较大影响,但当信号含噪水平不超过5%时,反演结果仍具有较好的准确性;若浅层存在较厚的低阻层,OCCAM反演结果对下部地层的分辨能力下降,仅能获得具有平均效应的电阻率.将一维算法应用于SOTEM三维数据的反演,会产生较大的误差,尤其是在异常体边缘地带影响最为严重.该影响程度与异常体和背景电阻率之间的差异有关,对于大多数电性近似呈连续变化的真实大地而言,一维OCCAM反演算法仍可获得较好的效果.最后通过陕西某煤田深部富水性调查的实测SOTEM数据反演验证了本文的研究成果.

  相似文献   

13.
陈晓  于鹏  张罗磊  李洋  王家林 《地球物理学报》2011,54(10):2673-2681
在传统的联合反演研究中,地球物理学者往往更多地关注数据拟合,很少涉及正则化理论.本文在电阻率和速度随机分布的大地电磁测深(MT)与地震联合反演研究的基础之上,将正则化思想引入到同步联合反演中,加入先验信息进行模型约束,选取最小模型为稳定泛函,并首次采用自适应正则化算法来确定联合反演的正则化因子.根据以往研究成果,采用非线性模拟退火方法来实现MT视电阻率或相位与地震走时的同步联合反演.此外,为了验证该算法的有效性,在模型对比试验中设计了4种不同方案.通过模型试验的对比分析,我们认为加入有效模型约束的自适应正则化联合反演,可以有效地提高解的稳定性和计算效率,并能在一定程度上解决不同地球物理数据加权系数人为选取问题,模型试验结果也表明了自适应正则化联合反演优于MT单独反演.  相似文献   

14.
重力与地震资料的模拟退火约束联合反演   总被引:17,自引:8,他引:17       下载免费PDF全文
联合反演是综合地球物理研究的重要定量解释手段.本文在总结和分析重力与地震资料联合反演的研究现状基础上,利用改进的全局寻优的快速模拟退火算法,实现了重力和地震资料的约束同步联合反演.针对性地设计了密度和速度界面不完全一致的模型,理论模型的试验说明了方法的效果和适用性.结合最近完成的广东徐闻地区实际资料的处理和解释,表明该方法可准确确定复杂构造物性界面的密度和速度结构,在该地区的油气勘探中发挥了作用.在先验信息约束下,该联合反演方法要明显优于单独的重力反演.  相似文献   

15.
In this study, a new two‐dimensional inversion algorithm was developed for the inversion of cross‐hole direct current resistivity measurements. In the last decades, various array optimisation methods were suggested for resistivity tomography. However, researchers have still collected data by using classical electrode arrays in most cross‐hole applications. Therefore, we investigated the accuracy of both the individual and the joint inversion of the classical cross‐hole arrays by using both synthetic and field data with the developed algorithm. We showed that the joint inversion of bipole–bipole, pole–bipole, bipole–pole, and pole–tripole electrode arrays gives inverse solutions that are closer to the real model than the individual inversions of the electrode array datasets for the synthetic data inversion. The model resolution matrix of the suggested arrays was used to analyse the inversion results. This model resolution analysis also showed the advantage of the joint inversion of bipole–bipole, pole–bipole, bipole–pole, and pole–tripole arrays. We also used sensitivity sections from each of the arrays and their superpositions to explain why joint inversion gives better resolution than the any individual inversion result.  相似文献   

16.
为了有效解决目前大地电磁和地震走时资料单方法反演结果一致性不好的问题,同时克服基于岩石不同物性参数间关系耦合约束联合反演的局限性,本文研究了基于交叉梯度耦合约束的大地电磁与地震走时资料的三维联合反演算法.以较为成熟的天然地震走时资料三维正反演和大地电磁三维正反演算法为基础,实现了具有共同的反演网格,以交叉梯度结构耦合约束,并能同时获得电阻率和速度模型的三维联合反演算法.分别利用单棱柱体模型和双棱柱体模型合成数据进行了联合反演试算.结果表明:无论是单棱柱体模型还是双棱柱体模型,联合反演结果比单独反演对异常体的空间形态都有更好的恢复,其中单棱柱体模型反演的异常体电阻率更接近于真实电阻率,双棱柱体模型的联合反演结果不仅消除了围岩的部分电阻率假异常,而且增强了对异常体深部速度结构特征的恢复程度.联合反演还能同时改善电阻率和速度反向变化异常体的单独反演结果,进一步证明交叉梯度耦合不依赖于岩石物性关系,而强调地下结构的相似性,具有更普遍的适用性.  相似文献   

17.

随着重力和重力梯度测量技术的日趋成熟,基于重力和重力梯度数据的反演技术得到了广泛关注.针对反演多解性严重、计算效率低和内存消耗大等难点问题,本文开展了三维重力和重力梯度数据的联合反演研究,该方法结合重力和重力梯度两种数据,将L0范数正则化项加入到目标函数中,并在数据空间下采用改进的共轭梯度算法求解反演最优化问题.同时,本文摒弃了依赖先验信息的深度加权函数,引入了自适应模型积分灵敏度矩阵,用来克服因重力和重力梯度数据核函数随深度增加而衰减引起的趋肤效应问题.为了提高反演计算效率,本文又推导出基于规则网格化的重力和重力梯度快速正演计算方法.模拟试算表明,改进的共轭梯度法可以降低反演的迭代次数,提高反演的收敛速度;自适应模型积分灵敏度矩阵,可以有效解决趋肤效应,提高反演纵向分辨能力;数据空间和改进的共轭梯度算法结合,可以更好地降低反演求解方程的维度,避免存储灵敏度矩阵,有效地降低反演计算时间和内存消耗量.野外实例表明,该算法可以在普通计算机下快速地获得地下密度分布模型,表现出较强的稳定性和适用性.

  相似文献   

18.

本文基于拟牛顿法对大地电磁与接收函数进行联合反演,提出了新的联合约束算子,实现了电阻率模型和速度模型之间的相似度约束.该方法给予两种模型足够的变化自由度,同时又约束两种模型向耦合方向演化.根据联合约束算子在反演迭代中的变化趋势,以及两种模型的空间梯度分布,可以判断电阻率模型和速度模型是否耦合.合成数据和野外实测结果表明,联合反演相对于单独反演可以提高电阻率和速度模型之间耦合程度,同时也能保持较好的数据拟合.联合反演提高了大地电磁的纵向分辨率,一定程度降低了大地电磁的非唯一性.

  相似文献   

19.
基于物性参数耦合的多地球物理数据联合反演方法是21世纪初发展起来的新技术,速度-密度耦合约束下的重震联合反演是其重要分支之一.相比于传统的重震资料综合解释,基于速度-密度耦合的重震联合反演能够减少主观因素的干扰,发挥地震和重力数据的互补作用,产生精度和一致性更高的速度-密度模型.结合国内外现状,本文较为全面地介绍了现有的速度-密度耦合方式,并讨论了速度-密度耦合约束下重震联合反演策略和目标函数的构建及求解等相关问题.不同反演策略和耦合方式的适用性不同,没有绝对的优劣之分.根据研究区的实际情况,在合适的速度-密度耦合约束下开展重震联合反演研究和应用是下一步工作的重点.  相似文献   

20.
芦俊  王赟  石瑛 《地球物理学报》2011,54(11):2967-2972
基于煤岩的坚固性、变形模量以及纵、横波速度之间的岩石力学规律,提出用多波地震与测井数据的联合反演定量化预测煤岩的坚固性.根据煤田三维三分量地震采集的特点,建立了PP波与PS波平均入射角部分叠加道集的井约束反演流程;利用煤岩的坚固性系数与变形模量之间的换算关系对目标煤层的坚固性系数空间变化规律进行预测,并划分可能发生煤与瓦斯突出的区域.实际应用结果表明该方法可以为煤矿的安全生产提供有利的评价参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号