首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Geology Review》2012,54(10):1219-1228
This article examines a report in the 27th chapter of the Gospel of Matthew in the New Testament that an earthquake was felt in Jerusalem on the day of the crucifixion of Jesus of Nazareth. We have tabulated a varved chronology from a core from Ein Gedi on the western shore of the Dead Sea between deformed sediments due to a widespread earthquake in 31 BC and deformed sediments due to an early first-century earthquake. The early first-century seismic event has been tentatively assigned a date of 31 AD with an accuracy of ±5 years. Plausible candidates include the earthquake reported in the Gospel of Matthew, an earthquake that occurred sometime before or after the crucifixion and was in effect ‘borrowed’ by the author of the Gospel of Matthew, and a local earthquake between 26 and 36 AD that was sufficiently energetic to deform the sediments at Ein Gedi but not energetic enough to produce a still extant and extra-biblical historical record. If the last possibility is true, this would mean that the report of an earthquake in the Gospel of Matthew is a type of allegory.  相似文献   

2.
Shmuel Marco   《Tectonophysics》2008,453(1-4):148
Archaeological structures that exhibit seismogenic damage expand our knowledge of temporal and spatial distribution of earthquakes, afford independent examination of historical accounts, provide information on local earthquake intensities and enable the delineation of macroseismic zones. They also illustrate what might happen in future earthquakes. In order to recover this information, we should be able to distinguish earthquake damage from anthropogenic damage and from other natural processes of wear and tear. The present paper reviews several types of damage that can be attributed with high certainty to earthquakes and discusses associated caveats. In the rare cases, where faults intersect with archaeological sites, offset structures enable precise determination of sense and size of slip, and constrain its time. Among the characteristic off-fault damage types, I consider horizontal shifting of large building blocks, downward sliding of one or several blocks from masonry arches, collapse of heavy, stably-built walls, chipping of corners of building blocks, and aligned falling of walls and columns. Other damage features are less conclusive and require additional evidence, e.g., fractures that cut across several structures, leaning walls and columns, warps and bulges in walls. Circumstantial evidence for catastrophic earthquake-related destruction includes contemporaneous damage in many sites in the same area, absence of weapons or other anthropogenic damage, stratigraphic data on collapse of walls and ceilings onto floors and other living horizons and burial of valuable artifacts, as well as associated geological palaeoseismic phenomena such as liquefaction, land- and rock-slides, and fault ruptures. Additional support may be found in reliable historical accounts. Special care must be taken in order to avoid circular reasoning by maintaining the independence of data acquisition methods.  相似文献   

3.
The seismic hazard assessment of the Dead Sea rift, Jordan   总被引:1,自引:0,他引:1  
The Dead Sea fault system and its branching faults represent one of the most tectonically active regions in the Middle East. The aim of this study is to highlight the degree of hazards related to the earthquake activities associated with the Dead Sea rift, in terms of speculating the possible future earthquakes. The present investigation mainly is based on available data and vertical crustal modeling of Jordan and the Dead Sea model for the Dead Sea basin with particular emphasis of the recent earthquake activities, which occurred on December 31st, 2003 (Mc = 3.7), February 11th, 2004 (strongest Mc = 4.9 R), and March 15th, 2004 (Mc = 4). The present research examines the location of the strong events and correlates them with the various tectonic elements in the area. The source mechanism of the main shock and the aftershock events is also examined. The analyses were based on the available short period seismogram data, which was recorded at the Natural Resources Authority of Jordan, Seismological Observatory. The seismic energy appears to have migrated from the south to the north during the period from December 31st up to March 12th, where the released seismic energy showed a migration character to the southern block of the eastern side of the Dead Sea, which led the seismic event to occur on March 15th.  相似文献   

4.
《Comptes Rendus Geoscience》2015,347(4):161-169
The Dead Sea Fault is a major strike-slip fault bounding the Arabia plate and the Sinai subplate. On the basis of three GPS campaign measurements, 12 years apart, at 19 sites distributed in Israel and Jordan, complemented by Israeli permanent stations, we compute the present-day deformation across the Wadi Arava fault, the southern segment of the Dead Sea Fault. Elastic locked-fault modelling of fault-parallel velocities provides a slip rate of 4.7 ± 0.7 mm/yr and a locking depth of 11.6 ± 5.3 km in its central part. Along its northern part, south of the Dead Sea, the simple model proposed for the central profile does not fit the velocity field well. To fit the data, two faults have to be taken into account, on both sides of the sedimentary basin of the Dead Sea, each fault accommodating  2 mm/yr. Locking depths are small (less than 2 km on the western branch, ∼ 6 km on the eastern branch). Along the southern profile, we are once again unable to fit the data using the simple model, similar to the central profile. It is very difficult to propose a velocity greater than 4 mm/yr, i.e. smaller than that along the central profile. This leads us to propose that a part of the relative movement from Sinai to Arabia is accommodated along faults located west of our profiles.  相似文献   

5.
The Elat fault (a segment of the Dead Sea Transform) runs along the southern Arava valley (part of the Dead Sea Rift, Israel) forming a complex fault zone that displays a time-dependent seismic behaviour. Paleoseismic evidence shows that this fault zone has generated at least 15 earthquakes of magnitude larger than M 6 during the late Pleistocene and the Holocene. However, at present the Elat fault is one of the quietest segments of the Dead Sea Transform, lacking even microsesimicity. The last event detected in the southern Arava valley occurred in the Avrona playa and was strong enough to have deformed the playa and to change it from a closed basin with internal drainage into an open basin draining to the south.Paleoseismological, geophysical and archaeological evidences indicate that this event was the historical devastating earthquake, which occurred in 1068 AD in the eastern Mediterranean region. According to the present study this event was strong enough to rupture the surface, reactivate at least two fault branches of the Elat fault and vertically displace the surface and an early Islamic irrigation system by at least 1 m. In addition, the playa area was uplifted between 2.5 and 3 m along the eastern part of the Elat fault shear zone. Such values are compatible with an earthquake magnitude ranging between M 6.6 and 7. Since the average recurrence interval of strong earthquakes during the Holocene along the Elat fault is about 1.2 ± 0.3 ky and the last earthquake occurred more about 1000 years ago, the possibility of a very strong earthquake in this area in the future should be seriously considered in assessing seismic hazards.  相似文献   

6.
Rockfall ages in tectonically active regions provide information regarding frequency and magnitude of earthquakes. In the hyper-arid environment of the Dead Sea fault (DSF), southern Israel, rockfalls are most probably triggered by earthquakes. We dated rockfalls along the western margin of the DSF using terrestrial cosmogenic nuclides (TCN). At each rockfall site, samples were collected from simultaneously exposed conjugate boulders and cliff surfaces. Such conjugate samples initially had identical pre-fall (“inherited”) TCN concentrations. After boulder detachment, these surfaces were dosed by different production rates due to differences in post-fall shielding and geometry. However, in our study area, pre-rockfall inheritance and post-rockfall production rates of TCN cannot be evaluated. Therefore, we developed a numerical approach and demonstrated a way to overcome the above-mentioned problems. This approach can be applied in other settings where rockfalls cannot be dated by simple exposure dating. Results suggest rockfall ages between 3.6 ± 0.8 and 4.7 ± 0.7 ka. OSL ages of sediment accumulated behind the boulders range between 0.6 ± 0.1 and 3.4 ± 1.4 ka and support the TCN results. Our ages agree with dated earthquakes determined in paleoseismic studies along the entire length of the DSF and support the observation of intensive earthquake activity around 4–5 ka.  相似文献   

7.
 A sediment core from the southern Dead Sea was analyzed using gamma spectroscopy as well as 210Pb dating in order to ascertain if any radioactive contamination could be detected and to determine the sedimentation rates in the area. Results of this study show no presence of man-made radionuclides in the area. Sedimentation rates were determined to be between 0.25 and 0.4 g/cm2/year. (∼0.5 cm/year), which is in line with what would be expected assuming carbonate layers are annual varves. Received: 31 January 1997 · Accepted: 11 March 1997  相似文献   

8.
Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N–S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5 km over 10 km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults.  相似文献   

9.
Evaporitic‐lagoonal marl and dolomite laminar fill sediments are preserved in relict dry caves of the Dead Sea Fault Escarpment (Israel) which has been tectonically active since the Late Neogene. The hosting caves are located within Turonian massive carbonate bedrock and at higher altitudes than previously documented fill sediments of the Dead Sea depression. Based on the relative altitudes of the cave sediments, the ‘reversed stratigraphy’ of the Dead Sea depression fill sediments, possible partial correlation of the cave sediments with other fill sedimentary units of the depression, and sedimentary, geochemical and mineralogical characteristics, it is concluded that: (i) the cave sediments are among the oldest of the depression fill; and (ii) the deposition of the cave sediments took place in hypersaline dolomite‐precipitating water bodies of Late Neogene age, during the initial morphotectonic stages of the depression formation. Variable and relatively low Sr/Ca and δ34S ratios of the cave sediments (assuming precipitation from sea water) suggest variable fresh water input into the depositional brine. The present altitudes of the cave sediments reflect Late Neogene levels of water bodies in the depression, modified by vertical post‐Late Neogene tectonic movements within the still active fault escarpment. According to these altitudes, a 50 to 250 m uplift of the western margins of the depression since the Late Miocene to Early Pliocene is inferred.  相似文献   

10.
The Dead Sea Basin is the lowest point on earth and is tectonically subsiding. During the Holocene Period the climate became much drier with increasing evaporation whereby initially lacustrine sediments were deposited from the non-marine brines, giving a multi-layered stratigraphy of lime carbonate and halite sediments. The lime carbonate sediments are comprised of laminated, clay to silt sized, clastic sediments (calcite) and authigenic aragonite and gypsum. The halite commonly appears as rock salt. Chemical industries, based on harvesting the salts from the Dead Sea, have developed on both the Israeli and the Jordanian sides of the basin. The lime carbonate soils are used for dike construction, and these soils, together with significant salt layers, are encountered in the foundations of structures, dikes, and tailings dams, requiring definition of their geotechnical properties. Use of standard soil mechanics definitions and testing approaches for the lime carbonates have been found inapplicable, particularly in view of their exceptionally high saline content, and it has been necessary to develop new concepts. The rock salt is encountered at shallow depths, with unit weights considerably lower than those usually discussed in the literature, and with correspondingly different mechanical properties. The geotechnical properties of these soils, and approaches used to define them, are discussed in the paper.  相似文献   

11.
A comprehensive record of lake level changes in the Dead Sea has been reconstructed using multiple, well dated sediment cores recovered from the Dead Sea shore. Interpreting the lake level changes as monitors of precipitation in the Dead Sea drainage area and the regional eastern Mediterranean palaeoclimate, we document the presence of two major wet phases ( 10–8.6 and  5.6–3.5 cal kyr BP) and multiple abrupt arid events during the Holocene. The arid events in the Holocene Dead Sea appear to coincide with major breaks in the Near East cultural evolution (at  8.6, 8.2, 4.2, 3.5 cal kyr BP). Wetter periods are marked by the enlargement of smaller settlements and growth of farming communities in desert regions, suggesting a parallelism between climate and Near East cultural development.  相似文献   

12.
This paper presents the first paleostress results from fault-slip data on Cretaceous limestone at the eastern rim of the Dead Sea transform (DST) in Jordan. Stress inversion of fault-slip data is performed using an improved right dieder method, followed by rotational optimization (Delvaux, TENSOR Program). The orientation of the principal stress axes (σ1, σ2 and σ3) and the ratio of the principal stress differences ( ) show two main paleostress fields marking two main stress regimes, strike-slip and extensional. The first is characterized by NNW–SSE compression and ENE–WSW extension and related to Middle Miocene-Recent sinistral movement along the Dead Sea transform and the opening of the Red Sea. The second paleostress field is a WNW–ESE compression and NNE–SSW extension restricted to the northern part of the investigated area. This stress field could be associated with the development of the Syrian Arc fold belt which started during the Turonian, or it may be due to an anticlockwise rotation of the first stress field.  相似文献   

13.
 The demand for water resources in the area south of the Dead Sea due to continued development, especially at the Arab Potash Company (APC) works necessitates that water quality in the area be monitored and evaluated based on the local geology and hydrogeology. The objective of this paper is to provide information on the past and present status of the main aquifers under exploitation or planned for future development. Two main aquifers are discussed: the Safi water field, presently being operated, and the Dhiraa water field, which is being developed. The aquifer developed in the Safi water field is shallow and fed by the Hasa fault system, which drains a significant portion of the Karak mountains. This aquifer seems to be well replenished within the core, where no obvious long-term degradation in water quality can be identified. However, in the low recharge areas within the distal portions of the alluvial fan, there has been a degradation in water quality with time. The degradation is caused by the dissolution of the Lisan Marl, which is present at the outskirts of the fan system, based on hydrochemistry of water in the wells. The Dhiraa field is a deep (800–950 m) aquifer drilled specifically for the extraction of brackish water present in the Kurnub aquifer. Available data indicate that there are at least three distinct water types within this field. These water types are variable in quality, and there may be potential for mixing of these waters, thus affecting the quality of the freshest waters presently available. Tritium and oxygen isotope analysis indicate that the water is old and possibly nonrenewable. Received: 24 July 1995 · Accepted: 26 September 1995  相似文献   

14.
The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U-Th dated 2.46 ± 0.10 to 2.10 ± 0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46-2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.  相似文献   

15.
A 3D interpretation of the newly compiled Bouguer anomaly in the area of the “Dead Sea Rift” is presented. A high-resolution 3D model constrained with the seismic results reveals the crustal thickness and density distribution beneath the Arava/Araba Valley (AV), the region between the Dead Sea and the Gulf of Aqaba/Elat. The Bouguer anomalies along the axial portion of the AV, as deduced from the modelling results, are mainly caused by deep-seated sedimentary basins (D > 10 km). An inferred zone of intrusion coincides with the maximum gravity anomaly on the eastern flank of the AV. The intrusion is displaced at different sectors along the NNW–SSE direction. The zone of maximum crustal thinning (depth 30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness of the region (38–42 km). Linked to the left lateral movement of approx. 105 km at the boundary between the African and Arabian plate, and constrained with recent seismic data, a small asymmetric topography of the Moho beneath the Dead Sea Transform (DST) was modelled. The thickness and density of the crust suggest that the AV is underlain by continental crust. The deep basins, the relatively large intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling could be responsible for the thinning of the crust and subsequent creation of the Dead Sea basin during the left lateral movement. A clear segmentation along the strike of the DST was obtained by curvature analysis: the northern part in the neighbourhood of the Dead Sea is characterised by high curvature of the residual gravity field. Flexural rigidity calculations result in very low values of effective elastic lithospheric thickness (t e < 5 km). This points to decoupling of crust in the Dead Sea area. In the central, AV the curvature is less pronounced and t e increases to approximately 10 km. Curvature is high again in the southernmost part near the Aqaba region. Solutions of Euler deconvolution were visualised together with modelled density bodies and fit very well into the density model structures. An erratum to this article can be found at  相似文献   

16.
The northern part of the Dead Sea Fault Zone is one of the major active neotectonic structures of Turkey. The main trace of the fault zone (called Hacıpaşa fault) is mapped in detail in Turkey on the basis of morphological and geological evidence such as offset creeks, fault surfaces, shutter ridges and linear escarpments. Three trenches were opened on the investigated part of the fault zone. Trench studies provided evidence for 3 historical earthquakes and comparing trench data with historical earthquake records showed that these earthquakes occurred in 859 AD, 1408 and 1872. Field evidence, palaeoseismological studies and historical earthquake records indicate that the Hacıpaşa fault takes the significant amount of slip in the northern part of the Dead Sea Fault Zone in Turkey. On the basis of palaeoseismological evidence, it is suggested that the recurrence interval for surface faulting event is 506 ± 42 years on the Hacıpaşa fault.  相似文献   

17.
The Dead Sea as a unique geological and geographical phenomenon has an effect on its adjacent areas. Therefore, 17 sampling sites at the eastern highlands facing the Dead Sea; beside three blank sites were collectedlocated during summer (2005). The aim was to investigate such influence on the chemical and mineralogical composition of dry deposition, and to measure the settling rate. The investigations showed that the depositional rate at the studied sites was much lower than other areas at central and southern Jordan. The average heavy metal contents are almost similar in all sampling sites and the blanks, and they exhibit similar enrichment series, whereas, the meaningful difference between sampling sites and blank was in cation and anion content, which caused different enrichment series between the two sites. The index of pollution (IP) confirms that mainly cations and anions have IP > 1.0 and they dominate the southern and the closest sampling sites to the Dead Sea. The XRD results reveals that the studied samples have minor phases such as halite, gypsum, and dolomite. Meanwhile, these mineral phases are not found in blank samples. All these results indicates the influence of the Dead Sea, as it is a highly saline large water mass, which accompanied with by high evaporation rates causing causes the atmosphere over the Sea to be enriched with these cations, anions, elements and minerals, which eventually are adsorbed in air particulate or carried out as dry deposition and transported by the NW–SE prevailing winds, and fall over the eastern highlands.  相似文献   

18.
The shrinkage of the Lisan Lake (LL) to form the recent Dead Sea (DS) was mainly a result of the reduction of the catchment area from around 157,000 km2 during Late Pleistocene to 43,000 km2 presently. The reduction in the catchment area resulted from the eruption and spread of the basalt flows of Jabal Arab-Druz (JAD), which together with the resulting deposition of thick rock debris and gravels occupied the drainage system. The filling of the pre-basalt drainage system, which used to feed the Dead Sea, with basalts and alluvial sediments blocked the inflows from reaching the Dead Sea. Local base levels along the basalt flow boarders such as Azraq Oasis, Sirhan Basin and Damascus Oasis, and numerous pools and mud flats were created.  相似文献   

19.
Palynological records in cores C4 and B106 from the Gulf of Tonkin reveal signals of paleo-monsoon and paleoenvironmental change during the late Pleistocene and Holocene. Before ∼ 13.4 cal kyr BP, the Gulf of Tonkin was exposed to the atmosphere and covered by grassland. Starting at ∼ 11.7 cal kyr BP, the Gulf of Tonkin was inundated by brackish water, indicated by the appearance of the brackish algae Cleistosphaeridium, Sentusidinium and Spiniferites, a decrease of herb content, and an increase of Pinus. After Hainan Island was completely separated from the Leizhou Peninsula by Qiongzhou Strait at ∼ 8.5 cal kyr BP, a continuous marine sedimentary environment was found. The current patterns were similar to those of the present, with a general trend of current homogenization reflected by gradually decreasing quantities of Quercus pollen and a narrowing gap between the palynological concentrations of the southern and northern parts of the region. The data suggest that three short periods of strengthened winter monsoons and currents were centered at ∼ 6.0 cal kyr BP, ∼ 2.7 cal kyr BP and ∼ 0.2 cal kyr BP and that two short periods of strengthened summer monsoons and currents were centered at ∼ 7.5 cal kyr BP and ∼ 3.4 cal kyr BP.  相似文献   

20.
The Lisan Peninsula, Jordan, is a massive salt layer accumulated in the inner part of the Dead Sea’s precursory lakes. This tongue-shaped, emergent land results in a salt diapir uplifted in the Dead Sea strike-slip regional stress field and modified by the water level fluctuations of the last lake during the Holocene. These two elements, associated with dissolution caused by rainfall and groundwater circulation, resulted in an authentic karst system. Since the 1960s, the Dead Sea lowering of 80 cm to 1 m per year caused costly damages to the industrial plant set up on the peninsula. The Lisan karst system is described in this article and the components of the present dynamic setting clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号