首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effective lithospheric elastic thickness of the continent is an important parameter for examination of the large-scale structure and analyses of the mechanism of isostatic compensation within the plate, and a parameter standing for the strength of the lithosphere.The Te values along Quanzhou-Heishui,the southeast section of the Arctic Ocean-Eurasian Continent-Pacific Ocean geoscience transect, are estimated by using the coherence technique developed by Forsyth.Studies of the feature of the coher-ence between gravity and topography suggest that at short wavelengths(6.6-100km)for each data box that is used to estimate Te,the plate is strong enough to support topographic loads and gravity and topog-raphy are uncorrelated.At long wavelengths where the plate is deflected by surface and subsurface loads are compensated by the flexure model.Sichuan land-stone with low heat-flow values has high Te values whereas in Ninghua,Datian,land-stone with high heat-flow values has low Te values,which reflects a correlation,low heat-flow values corresponding to high Te values and high heat-flow values corresponding to low Te values.Te values can be divided into two sections:northwest high section and southeast low sec-tion.There is roughly a positive correlation between crustal thickness and effective elastic thickness of the lithosphere.  相似文献   

2.
The research priorities and drilling goals of Ocean Drilling Program are introduced from two scientific themes. The scientific theme of dynamics of earth's environment try to understand earth's changing climate, causes and effects of sea—level change, and other problems such as global carbon cycle, formation of gas hydrates and submarine biological  相似文献   

3.
The paper discusses the geochemical and Sr–Nd–Pb-isotope data on ice-rafted sediments (IRS) from different areas of the Arctic Ocean. Samples were collected during the Cruise of R/V Polarstern between Spitsbergen and North Pole, Yermak Plateau, as well as in Fram Strait. It is shown that the studied IRS samples in terms of LaN/YbN and εNd values are close to the composition of suspended particulate matter (SPM) from the mouth parts of large rivers and rivers transporting the sedimentary erosion products. This also follows from their Th/Sc, Th/Co, La/Sc, La/Sm, Sc/Th ratios and Sc content and from the position of their data points in the Sc–Th/Sc, La/Sc–Th/Co, and La/Sm–Sc/Th diagrams between the average SPM compositions of the Ob and Lena rivers. The values of 207Pb/206Pb and εNd in IRS samples give grounds to suggest that the rock complexes of the European, North American, and Asian continental margins could be potential sources for this sedimentary material. In the 207Pb/206Pb–εNd diagram, the IRS samples from all three studied areas define a compact cluster and are mainly confined to the triangle with corners represented by the Mackenzie River, Okhotsk–Chukotka volcanic area, and Lena River, being closer to the latter. In the Sm/Nd–εNd diagram, IRS points also form a compact field, being located almost in the middle between the average SPM compositions of the Yenisei and Ob rivers, on the one hand, and Lena River, on the other. In all diagrams, IRS samples from the different West Arctic areas show no significant scatter. With allowance for the fact that sediments are not subjected to significant homogenization during ice rafting, sediments from all three areas were obtained from a common source. As seen from the position of IRS data points in the 87Sr/86Sr–εNd diagram, this source was the Asian continental margin.  相似文献   

4.
Within the northern fringe of the western (Khangai) flank of the Mongol–Okhotsk fold belt, magmatic complexes of intermediate to moderately acidic rocks occur. They comprise widely distributed gabbro–diorites, diorites, tonalites, and granodiorites. Geochronological studies have demonstrated that these rocks were formed in the time span of 437 to 375 Ma. The geochemical affinities of the rocks suggest their formation in subduction tectonic settings; hence, their paleotectonic position corresponds to the continental margin of the Mongol–Okhotsk paleoocean. It has been concluded that this Middle Paleozoic igneous activity occurred in the active continental margin settings, formed by subduction of the paleooceanic plate under the Siberian continent.  相似文献   

5.
6.
Fourteen ferromanganese nodule–sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule–sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo – (307, 273), Ni – (71, 125), Mn – (64, 87), Cu – (43, 80), Co – (23, 75), Pb – (15, 24), Zn – (9, 11) and V – (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation (r ? 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.  相似文献   

7.
8.
Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.  相似文献   

9.
Krapivner  R. B. 《Geotectonics》2020,54(4):477-493
Geotectonics - The article substantiates the conclusion about the tectonic nature of the last global transgression of the World Ocean. It is based on the results of marine studies in which complete...  相似文献   

10.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

11.
The geological position, composition, and age of detrital zircons of sedimentary deposits of the Nugan Formation of the Western Baikal region underlying the Golousta Formation of the Baikal series of Ediacaran age have been studied. The formation of both stratigraphic units due to the same sources of detrital material, located within the southern flank of the Siberian Craton, has been proved. The deposits of the Nugan Formation have been demonstrated to mark the rifting stage of the formation of the passive margin of the Paleo-Asiatic Ocean: their accumulation occurred in the Late Cryogenian during the interval 720–640 Ma.  相似文献   

12.
The traditional idea proposes that granites on the east and west coasts of the Pacific Ocean are different. According to field investigations of the geology of the western United States coupled with the authors' long-term studies on granites in South China, granites both in eastern China and in the western United States are similar.  相似文献   

13.
《Applied Geochemistry》1993,8(2):141-152
The results of analysis of natural emanations in Réunion Island show a clear magmatic origin for CO2 and He, while N2 and Ar are predominantly derived from the atmosphere. The distribution of magmatic gases in the Piton des Neiges massif fits the local volcanotectonic context well and suggests that the areas concerned are still subject to volcanic activity at depth. A simple method is proposed for correcting gas concentration and isotope composition for water degassing. In doing so, the isotope and elemental (C, He) composition of gases is homogeneous for the two volcanoes. The isotope ratio of He (12.5 ± 0.5R/Ra) in the present discharges is in agreement with the results of previous studies on rocks of various ages from the two volcanoes. The isotope ratio of C(δ13C= −5 ‰ to −4 ‰ vs PDB) and the C/3 He ratio (∼4 × 109) are similar to those found in other Hot Spot volcanic systems such as Kilauea (Hawaii) and Hengill (Iceland). These similarities suggest comparable volatile history for the respective mantle sources, the main differences being in the relative proportions of radiogenic 4He. In detail, Hot Spots appear enriched in C having a light composition with respect to MORB, possibly due to the addition of a C-rich (e.g. subducted) component, in addition to a relatively undegassed, 3He-rich, component.  相似文献   

14.
15.
Giant landslides on volcanic islands represent the largest formations which can be created in a single geological moment. Such landslides are distributed across the globe and have attracted a significant amount of research interest. Yet, no coherent attempts have been made to rationalise this information into a single online resource. This report summarises information about the structure of the recently created database of giant landslides on volcanic islands and presents some observations regarding the uncertainties inherent in the inventories. The database is being prepared over a 3-year period: the first year of the project has focused on rationalising information about giant landslides around the Atlantic Ocean while the second and third years will focus on rationalising information about such landslides from the Pacific Ocean and Indian Ocean, respectively. Using this database, it should be possible to interrogate the spatial and temporal patterns of land sliding and landslide reactivation as well as to better assess the hazard and potential risks posed by giant landslides on volcanic islands. It will be particularly interesting to see if any evidence can be found for global triggers, such as eustatic or climatic changes, instead of the more commonly expounded local triggers. Ultimately, it is hoped that the database will benefit both the geoscientific community and those agencies responsible for civil defence. This work is part of the activities of the International Consortium on Landslides, namely its International Programme on Landslides (Project n. 212). The database is available from the giant landslides project webpage: https://www.irsm.cas.cz/ext/giantlandslides.  相似文献   

16.
Geotectonics - Based on geological and geophysical data for the conjugate Africa–East Antarctica margins, the peculiarities of preparation of the breakup of central Gondwana are discussed....  相似文献   

17.
Isotope–geochemical studies of Mn, P, and Ba ores were performed in order to establish the influence of submarine hydrotherms on the formation of Early Cambrian sedimentary rocks of the southern environs of the Siberian Platform. Based on study of the geochemical and isotope (εNd) characteristics of the shallow-water Mn and Ba ores and phosphorites of southern environs of the Siberian Platform with similar ages, two types of sedimentary basins of the different geodynamic origins were distinguished: intraplate oceanic and those of the active continental margin, for which the sources of ore materials differ by the proportions of the mantle and contaminated crustal matter.  相似文献   

18.
The Southern Indian Ocean comprises large sedimentary basins of the Riiser-Larsen Sea (western sector); the Cosmonauts, Cooperation (Commonwealth), Davis seas (central sector); and the Mawson-d’Urville seas (eastern sector). The main tectonic provinces of the Southern Indian Ocean (Antarctica) have been outlined as a result of comprehensive interpretation of the geophysical data. Special attention is paid to determining the boundary between the rifted continental and oceanic crust. The basin of the Riiser-Larsen Sea was formed in the Early Jurassic under the action of the Karoo mantle plume. The intrusive complex, as a remote manifestation of the mantle plume, occurs along the inner boundary of the marginal rift. Opening of the ocean in the basin of Riiser-Larsen Sea started about 160 Ma ago and was characterized by rearrangement of plate motion and intense volcanic activity at the early stage. In the basin of the Cosmonauts, Cooperation, and Davis seas, the final stage of rifting was accompanied by the rise of the lithospheric mantle and by intrusive magmatism. The opening of the ocean started here 134 Ma ago. Emplacement of the Kerguelen plume resulted in jumping of ridges and detachment of continental crustal blocks from the Indian margin with the formation of the Kerguelen Plateau (microcontinent). The basin of the Mawson-d’Urville seas has evolved under conditions of long-term rifting since the Late Jurassic and is characterized by an extended zone of mantle unroofing. Breakup of the lithosphere between Australia and Antarctica developed asynchronously over a time interval of 95–65 Ma ago with propagation of MOR from the west eastward. The research was carried out using a great body of geophysical information (~140000 km of CDP seismic profiling, more than 250 stations of seismic refraction sounding, and more than 250000 km of magnetic and gravity profiles) obtained by expeditions from many countries over more than 30 years.  相似文献   

19.
Using the concept of the interactive water rock- microbe system of ocean floor, the microbialmineralization of ocean-floor polymetallic concretions in the central Pacific Ocean has been studied for the firsttime. Through the correlation and study of the microbial activity and formation mechanism of polymetallicconcretions, the microbial and chemical processes for. transforming mineralizing materials and the observationand determination of the concentration of mineralizing material in the system and the variation ofenvironmental parameters, this paper reveals the reaction rate and evolutionary direction of mineralizing com-ponents caused by microbial activity, expounds the microbial mineralization mechanism and formation modelof polymetallic concretions from the angle of microbial geochemical action, and suggests a threefold division ofthe microbial mineralization stages  相似文献   

20.
Drill sites in the southern Bay of Bengal at 3°N 91°E (International Ocean Discovery Program Expedition 362) have sampled for the first time a complete section of the Nicobar Fan and below to the oceanic crust. This generally overlooked part of the Bengal–Nicobar Fan System may provide new insights into uplift and denudation rates of the Himalayas and Tibetan Plateau. The Nicobar Fan comprises sediment gravity-flow deposits, mostly turbidites, that alternate with hemipelagite drapes and pelagite intervals of varying thicknesses. The decimetre-thick to metre-thick oldest pre-fan sediments (limestones/chalks) dated at 69 Ma are overlain by volcanic material and slowly accumulated pelagites (0.5 g cm−2 kyr−1). At Expedition 362 Site U1480, terrigenous input began in the early Miocene at ca 22.5 Ma as muds, overlain by very thin-bedded and thin-bedded muddy turbidites at ca 19.5 Ma. From 9.5 Ma, sand content and sediment supply sharply increase (from 1–5 to 10–50 g cm−2 kyr−1). Despite the abundant normal faulting in the Nicobar Fan compared with the Bengal Fan, it offers a better-preserved and more homogeneous sedimentary record with fewer unconformities. The persistent connection between the two fans ceased at 0.28 Ma when the Nicobar Fan became inactive. The Nicobar Fan is a major sink for Himalaya-derived material. This study presents integrated results of International Ocean Discovery Program Expedition 362 with older Deep Sea Drilling Project/Ocean Drilling Program/International Ocean Discovery Program sites that show that the Bengal–Nicobar Fan System experienced successive large-scale avulsion processes that switched sediment supply between the Bengal Fan (middle Miocene and late Pleistocene) and the Nicobar Fan (late Miocene to early Pleistocene). A quantitative analysis of the submarine channels of the Nicobar Fan is also presented, including their stratigraphic frequency, showing that channel size/area and abundance peaked at ca 2 to 3 Ma, but with a distinct low at 3 to 7 Ma: the intervening stratigraphic [sub]unit was a time of reduced sediment accumulation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号