首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
《Applied Geochemistry》1997,12(3):243-254
Column flow-through experiments reacting wastewater solutions with sandy loam soil samples were performed to study heavy metal attenuation by two soils with different physical and chemical properties. Reacted soil columns were leached with synthetic acid rain to study the mobility of attenuated heavy metals under leaching conditions. This study demonstrates that cation exchange, surface adsorption, chelation with solid organic material, and precipitation were the important attenuation mechanisms for the heavy metals (Cd, Cr, Cu, Mo, Ph, and Zn). Adsorption on soil hydrous oxide surfaces was the primary attenuation mechanism for Cd and Zn in both soils, and for Cu in a soil with low organic matter content. Wastewater solution pH is also an important factor that influences the retention of heavy metals. Cadmium, Cu, Cr, and Zn became mobile after prolonged application of spiked wastewater solution, either through saturation of soil adsorption sites or due to decreasing pH. Only Cr, Pb, and Mo, which are attenuated primarily through precipitation, show significant net retention by soil. Acid rain water removed heavy metals left in the column residual pore solution and weakly sorbed heavy metals in the soils, and has the ability to mobilize some strongly attenuated heavy metals, especially when the soil organic matter content is high. The results have important applications in predicting heavy metal mobility in contaminated soil, the disposal of acid mine drainage, and assessing the risks of landfall leachate leakage.  相似文献   

2.
The adsorption of cadmium (Cd) and zinc (Zn) with similar chemical properties is examined onto three soil samples: one is alkaline and the others are acidic. The distribution coefficient (K d) and the Freundlich constant (K F) for Zn are slightly higher than those for Cd, implying that the adsorption affinity of Zn is a little greater and less mobile. However, Cd and Zn usually show comparable results in the kinetic, isotherm, and envelope experiments. The adsorption of the heavy metals is relatively rapid and the reaction is almost completed within 15 min. The kinetics for both Cd and Zn are very well explained by the parabolic diffusion model. The maximum adsorption of the heavy metals is obtained at high pH, high temperature, and low ionic strength. The adsorption capacity on the alkaline soil is more significantly affected by the temperature as compared to the acidic soil. It is found that the adsorption affinity of the two heavy metals is mainly affected by the soil properties, such as pH, pHPZC, organic matter, and total carbon. It is also confirmed that the chemical properties of the heavy metals are important factors in their adsorption onto soil. The adsorption isotherms of Cd and Zn are well described in both Freundlich and Langmuir models at the usual pH (soil pH). Under acidic and alkaline pHs, however, only the Freundlich model describes the adsorption of both heavy metals satisfactorily.  相似文献   

3.
A careful selection of waste dumpsites, particularly hazardous ones, is very important for sustainable water resources management. Several laboratory experiments were carried out on the field samples to study adsorption capacity using p-dichlorobenzene (a solvent used in various industrial processes) as the test contaminant. The effect of parameters such as organic matter, clay, and iron and aluminium oxides, which are known to influence the soil adsorption capacity, are studied in the present work. Several soil samples from the Patancheru Industrial Area (Hyderabad, India) were collected and characterized. Only three soils, which had a comparatively high percentage of organic matter, clay, iron and aluminium oxide contents were used for the adsorption studies. The results clearly indicated a decrease in the adsorption capacity of the soils by as much as 75% when organic matter was removed. The other parameters such as clay and iron and aluminium oxides also play an important role in adsorption (57 and 39.8% reduction respectively). It was observed that out of the selected factors organic matter in the soils has the maximum effect regarding the adsorption of p-dichlorobenzene. Since the selected soils contain comparatively more organic matter, clay and iron and aluminium oxides in the selected industrial area, these can be used as sites for dumping hazardous waste, which can be further treated by methods like bioremediation.  相似文献   

4.
在土壤中重金属含量较低的情况下,重金属的高光谱特征响应非常微弱,不易构建精确的高光谱直接反演模型.为了解决上述问题,依据土壤化学变量间的理化性质,将重金属富集特征转移到与之相关的化学主量元素上,使重金属微弱的信息得以间接定量反演.文中以海伦市黑土土壤为研究对象,通过主成分分析、 聚类分析确定了主量元素氧化铁(Fe2O3...  相似文献   

5.
A simulating experiment was carried out on the interaction between natural precipitation and soil. The results demonstrated that the contents of heavy metals (V, Co, Cr, and Ni) released from soil into the solution under Earth's surface conditions are higher than the contents of those metals bonded to exchangeable species, which were extracted by sequential extraction procedure recommended by Tessier and others in 1979. It is demonstrated that the metals bonded to other 3 species (carbonate, Fe-Mn oxide, and organic matter) except those bonded to the exchangeable species in efficient speciation can be released under the Earth's surface conditions, when pH=4 in the reaction system, and the higher correlation coefficient indicated that the concentrations of heavy metals released from soil into the solution vary approximately with reaction time in terms of index regulations.  相似文献   

6.
沈亚婷 《岩矿测试》2012,31(4):571-575
土壤溶解性有机质对重金属生物地球化学循环中的生物可利用性起着重要作用。近年来,在土壤溶解性有机质对植物吸收、输送和贮存重金属过程的影响研究领域,国际上主要聚焦于以下三个探索方向: ①土壤溶解性有机质与重金属形成配位体,改变重金属在土壤中的迁移性和植物根际环境的作用机理研究; ②土壤溶解性有机质可突破植物细胞内重金属吸附点位的限制,通过控制植物细胞壁-重金属复合体的形态及重金属在细胞壁内外的吸收平衡,来干预重金属穿过细胞壁进入植物体的动力学过程研究;③土壤溶解性有机质-重金属的络合形态影响重金属在植物体内的输送和贮存作用过程与机理研究。本文基于研究溶解性有机质和重金属的植物过程中,水体溶解性有机质研究多而土壤溶解性有机质研究少的现状,针对溶解性有机质异质性的研究难点和溶解性有机质与植物亚细胞结构的配位特征的复杂性与局限性,从极性、官能团、配位结构等角度,分析并评述了土壤溶解性有机质和重金属生物地球化学中,植物吸收、输送和贮存重金属过程的研究现状和未来发展趋势。  相似文献   

7.
The mobility of toxic metals in soils or sediments is of great concern to scientists and environmentalists since it directly affects the bioavailability of metals and their movement to surface and ground waters. In this study, a multi-surface soil speciation model for Cd (II) and Pb (II) was developed to predict the partition of metals on various soil solid components (e.g. soil organic matter (SOM), oxide mineral, and clay mineral). In previous study, the sorption of metal cations on SOM and oxide minerals has been evaluated by thermodynamically based surface complexation model. However, metal binding to soil clay fractions was normally treated in a simplistic manner: only cation exchange reactions were considered and exchange coefficient was assumed unity. In this study, the binding of metals onto clays was described by a two-site surface sorption model (a basal surface site and an edge site). The model was checked by predicting the adsorption behavior of Cd (II) and Pb (II) onto three selected Chinese soils as a function of pH and ionic strengths. Results showed that the proposed model more accurately predicted the metal adsorption on soils under studied condition, especially in low ionic strength condition, suggesting that adsorption of metals to soil clay fractions need to be considered more carefully when modeling the partition of trace elements in soils. The developed soil speciation model will be useful when evaluating the movement and bioavailability of toxic metals in soil environment.  相似文献   

8.
In this paper the seven-step continuous extracting method was employed in the study of chemical forms of the six heavy metals Co,Zn,Pb,Cu,Cr and Mn,The result shows that the etals in the laterite are present in the chemical form of crystalline iron oxides and residues,and they are transformed towared organic and exchangeable forms in the surface soil.Linear regression analysis indicates that the above heavy metals have a positive correlation with the crystalline iron oxide minerals.The crystalline iron oxide minerals have a very important role to play in the enrichment of heavy metals,especially the solid components in the laterite.  相似文献   

9.
Adsorption of bisphenol A on a lignin isolated from black liquor, a waste product of the paper industry, was investigated to assess the possibility of using the lignin to remove bisphenol A from waters. Effects of pH, ionic strength, heavy metals, and dissolved organic matter (DOM) on adsorption were examined. Adsorption equilibrium was approached within 5?h. The adsorption capacity of bisphenol A on lignin was as high as 237.07?mg/g. Ionic strength had no influence on the adsorption, while higher pH above 7.5 inhibited bisphenol A adsorption due to the repulsive electrostatic interaction between bisphenolate anion and the negatively charged lignin surface. The presence of heavy metals of copper and lead increased the adsorption by 11.90 and 26.80?%, respectively, possibly through modifying the physiochemical configuration characteristics of labile fraction of the lignin and reducing the polarity of it. No obvious impact of DOM on the adsorption was observed. The results of this study suggest that lignin is a promising adsorbent material to remove bisphenol A in wastewater containing complex components such as heavy metals and DOM, particularly at acid and neutral conditions.  相似文献   

10.
为揭示旱地和水田土壤镉的吸附解吸特征,以江汉平原黄豆地、棉花地以及水稻田土壤为研究对象,开展土壤镉的吸附动力学实验、等温吸附?解吸实验以及有机质的影响实验.结果表明:江汉平原土壤对镉的吸附是一个较为复杂的吸附动力学过程且以化学吸附为主,研究区土壤镉的初始吸附速率总体上表现为水田土壤大于旱地土壤;旱地土壤对Cd2+具有较...  相似文献   

11.
The use of coal fly ash and domestic sewage sludge in agriculture is being considered as one of the methods for recycling of these wastes in an environmental beneficial manner. Mixtures with soil were prepared at different proportions of fly ash and sludge, either alone or in combination at a maximum application rate of 52 t ha-1. The changes in the selected properties and heavy metal contents of three soil types in India were studied after incubating the respective mixtures for 90 days at near field capacity moisture level. Sewage sludge, due to its acidic and saline nature, high organic matter and heavy metals content, had more impact on soil properties than the fly ash. Sludge application produced several changes including an increase in available nitrogen, organic carbon, salinity and water-holding capacity of the soils. The concentrations of major cations and heavy metals also increased because of the sludge application and the pH was decreased. However, the levels of individual metal concentrations in all the mixture types were below the allowable limits prescribed by several environmental agencies. Using fly ash either alone or in equal quantity with sewage sludge had little influence on soil properties and heavy metal content. The relative availability (RA) of heavy metals in three soils amended with 52 t ha-1 of sewage sludge was observed to be highest in oxisol, followed by alfisol and vertisol.  相似文献   

12.
福建龙海土壤重金属含量特征及影响因素研究   总被引:1,自引:0,他引:1  
为有效预防土壤重金属生态风险,以福建龙海市表层土壤为研究对象,应用经典统计分析、随机森林等方法,研究重金属元素含量特征及其影响因素。结果表明:(1)第四纪冲洪(海)积成因水稻土中多数重金属元素含量较高;(2)燕山期中酸性岩风化形成的残坡积红壤中重金属元素活动态含量较高;(3)As、Cu、Ni形态含量与全量相关性较好,而Cd、Cr、Hg的多数形态含量与全量相关性较差;(4)除元素全量外,土壤有机质对弱有机结合态重金属(不包括Ni、Pb元素)以及离子交换态、碳酸盐结合态Cd、Zn有重要影响,阳离子交换量对各形态Ni,(Fe×Al)/Si对各形态Cu具有重要影响,而土壤成因、土壤类型对重金属形态组成的影响较小。研究表明土壤重金属形态组成及其富集区与其全量不尽一致,土壤重金属生态风险评价应考虑土壤重金属形态分布特征。  相似文献   

13.
我国部分地区土壤污染形势严峻,主要表现为Cu等重金属元素严重超标。污水灌溉以及含Cu饲料过量使用等不合理的农业生产方式是导致Cu在耕地中富集的主要因素,严重威胁粮食安全和人类健康。以河北保定典型污灌区为研究区,通过静态吸附批量实验探究土壤吸附Cu的动力学和热力学特性。吸附动力学模型和等温吸附经验模型中得到的参数一致表明,表层土壤S1对Cu的吸附能力强于底部土壤S2。S1的有机质含量高于S2,提供了更多的表面吸附点位,这可能是导致土壤S1对Cu的吸附能力更强的原因之一。离子强度对土壤Cu吸附率的影响较小。溶液pH和溶解性有机物(DOM)含量对土壤Cu吸附率的影响明显,pH值与吸附量呈正相关,DOM浓度与吸附量呈负相关。由于土壤对pH有很强的缓冲能力,短时间的酸雨可能不会导致Cu的迁移。施用有机肥时,有机肥浸出液中高浓度的DOM可能会与Cu形成水溶性Cu-DOM络合物,促进Cu在土壤中的迁移,导致浅层地下水污染。  相似文献   

14.
以广州市从化的赤红壤剖面为研究对象,系统测定了土壤的pH值和机械组成,土壤剖面中有机质含量、氧化铁矿物和粘土矿物的含量及分布特征,并进行了相关性分析。研究结果表明,赤红壤剖面的总有机质、稳定有机质含量、矿物稳定有机质含量和生化稳定有机质含量的变化趋势在整体上是一致的,均随深度的增加而降低。其中,矿物稳定有机质主要存在于土壤剖面的中间层,氧化铁矿物则大都集中在土壤剖面的中上层;赤红壤剖面各层位中高岭石含量都占绝对优势,为58.7%~84%,蒙脱石的含量次之,为8.5%~16.8%,除此之外,还含有较多的三水铝石。蒙脱石的含量随深度增加而降低,高岭石和三水铝石的含量随深度增加而升高。土壤有机质与氧化铁矿物的相关性较之与粘土矿物、三水铝石要大得多,有机质含量与无定形铁含量的相关系数均高于0.90,与蒙脱石、高岭石、三水铝石的相关系数分别为0.697 1、-0.681 2、-0.049 8,可见无定形铁在土壤有机质稳定中起着重要作用,提醒应更加关注土壤中有机质碳库稳定锁定中的矿物学机制及其影响因素。  相似文献   

15.
土壤有机无机复合体的研究进展   总被引:19,自引:0,他引:19  
对土壤有机无机复合体结构模型、有机无机复合体与团聚体的关系、有机无机复合体的肥力特征等方面的最新研究成果进行了综合评述。现代测试技术和计算机技术的应用为土壤有机无机复合体的研究提供了新的研究途径,发展形成了腐殖质胶体、有机无机复合体及有机质-异源生物物质复合体的结构模型,在纳米化学水平和三维分子结构模型上重新认识和阐明土壤有机无机复合体的结构和功能;有机无机复合体是土壤改良剂、营养源和重金属或有机有毒污染物过滤器;应在土壤科学、环境科学和生态学中,重视有机物质与矿物质相互作用和结构模型研究,加强土壤有机无机复合体环境化学行为和颗粒迁移动力学的研究。  相似文献   

16.
铁氧化物矿物对苯酚和溶解性有机质表面吸附的初步研究   总被引:2,自引:0,他引:2  
文中以铁氧化物矿物对苯酚和溶解性有机质(DOM)的吸附研究为例开展生态矿物学研究。铁氧化物矿物的吸附作用存在多种机制,这些吸附机制发生作用的条件主要取决于溶液化学性质和吸附质的理化性质。批处理实验研究表明,苯酚吸附在酸性微酸性条件下不强,吸附等温线符合Langmuir方程,属于表面分子吸附模型;DOM的吸附强并发生吸附分异,配体交换、憎水键和范氏力等多种模式并存,在酸性中性条件下对DOM在针铁矿上的吸附起着重要贡献。本文实验条件下DOM吸附等温线近于线性,不能采用Langmuir方程拟合,可能原因是DOM浓度较低。矿物表面荷电性对吸附影响显著,例如,当矿物表面净电荷为零(pH=pHpzc)时,矿物表面水化膜减薄甚至消失,苯酚分子、憎水DOM分子或片断都会倾向于在矿物表面上吸附。由于苯酚吸附机制单一,其受到的影响很明显,所以苯酚在pH值7~8范围内出现吸附最大值;由于配体交换作用主要发生在酸性微酸性条件下,所以在本文pH值约7.5的实验条件下,尽管配体交换仍在发生作用,但它不是主要吸附机制,针铁矿对DOM吸附的主要贡献应是憎水键和范氏力作用,此外,DOM吸附等温方程近于线性还可能与此有关。显然,铁矿物表面作用在对有机质含量低而铁矿物含量高的红壤中污染物和DOM的固定与归宿控制中扮演着重要的角色。  相似文献   

17.
为了对地下水系统中天然胶体与Ni2+的共迁移特征进行研究,通过静态吸附实验和石英砂模拟含水层介质柱实验研究了土壤胶体对Ni2+在地下水中运移的影响,以及pH、离子强度(IS)、有机质等对土壤胶体吸附Ni2+的影响。结果表明:随着pH值升高,土壤胶体对Ni2+的吸附量增加;离子强度的增加会显著地降低土壤胶体吸附Ni2+的能力;腐殖酸(HA)的存在会增强胶体对Ni2+的吸附能力;在有胶体的情况下,Ni2+穿透砂柱的时间会缩短,吸附能力增强,吸附量增加,但当离子强度增加时,虽然Ni2+穿透砂柱的时间也被缩短,但是吸附量却降低。  相似文献   

18.
The spatial variability of soil heavy metals in conventional and organic greenhouse vegetable production (CGVP and OGVP) systems can reveal the influence of different farming activities on their accumulation and plant uptake. This provides important basic data for soil utilization and pollution risk assessment. Based on horizontal and vertical spatial analysis, this paper presents the spatial variability and accumulation of soil heavy metals. The effects on plant uptake and factors influencing heavy metal accumulation are presented using the two typical greenhouse vegetable sites in Nanjing City, China as examples. Results showed that different greenhouse vegetable production systems had their own dominant heavy metal accumulation, specifically, Hg and Pb in CGVP system and Cd in OGVP system. The spatial analysis showed that horizontally, distribution of soil properties and heavy metal concentrations in the two sites showed decreases from specific regions to the periphery for organic matter (OM), Cd, Cu, Hg, Pb, and Zn in CGVP and OM, As, Cd, Cu, Hg, Pb, and Zn in OGVP. Vertically, soil properties and heavy metals mainly vary in the topsoil. The key factor for the accumulation was excess fertilizer input. Variation of soil properties and the accumulation of soil heavy metals significantly influenced heavy metal uptake by plants. However, accumulation risk varied according to different heavy metals and different plant species. Environmental management of these two kinds of production systems should pay more attention to fertilizer application, plant selection, and soil properties.  相似文献   

19.
对于人为因素或自然因素造成的农田土壤重金属元素污染,需要进行大面积的土壤环境质量调查和分类管控,然而传统的采样测试方法存在工作量大、代价高等问题。可见—近红外(Vis-NIR)反射光谱是一种快速低成本获取土壤理化信息的手段。为研究Vis-NIR反射光谱预测模型划分土壤重金属污染风险类别的能力,文章以典型人为污染地区(浙江温岭)和典型地质高背景地区(广西横县)的390份农田土壤为样本,测定8种重金属元素(As、Cd、Cr、Cu、Hg、Ni、Pb和Zn)的含量和pH值,并测定土壤Vis-NIR光谱。使用偏最小二乘(PLS)和支持向量机(SVM)算法建立回归模型,对土壤重金属含量和pH值进行预测,并基于预测值进行土壤重金属污染风险分类。结果显示,温岭土壤主要污染元素Cd和Cu的光谱模型回归预测偏差(RPD)分别为1.23和1.19,预测机制与有机质有关。横县土壤主要污染元素As和Cd的RPD分别为1.98和1.93,预测机制与铁氧化物和粘土矿物有关。地质高背景土壤重金属与铁氧化物的正相关性普遍较强,使得光谱模型对重金属含量预测准确度较高。温岭和横县土壤pH值的光谱模型RPD分别为1.76和1.68。土壤重金属污染风险光谱分类的总体 准确度分别为75.0%~100%(温岭)和80.0%~100%(横县)。将Vis-NIR光谱与遥感技术相结合,对农田土壤重金属污染风险进行快速分类总体是可行的。  相似文献   

20.
The constant capacitance model, a chemical surface complexation model, was applied to selenite, Se(IV), adsorption on 36 soils selected for variation in soil chemical properties. The constant capacitance model was able to fit Se(IV) adsorption by optimizing one monodentate Se(IV) surface complexation constant and the surface protonation constant. A general regression model was developed for predicting these surface complexation constants for Se(IV) from easily measured soil chemical characteristics. These chemical properties were inorganic carbon content, organic carbon content, iron oxide content, aluminum oxide content, and surface area. The prediction equations were used to obtain values for the surface complexation constants for four additional soils, thereby providing a completely independent evaluation of the ability of the constant capacitance model to describe Se(IV) adsorption. The model’s ability to predict Se(IV) adsorption was quantitative on one soil and semi-quantitative on three soils. Incorporation of these prediction equations into chemical speciation-transport models will allow simulation of soil solution Se(IV) concentrations under diverse non-calcareous agricultural and environmental conditions without the requirement of soil specific adsorption data and subsequent parameter optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号