首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetotelluric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-profile conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.  相似文献   

2.
The geology and tectonics in the eastern margin of Tibetan Plateau are complex. The main tectonic framework is composed of blocks and faults. Using discontinuous global positioning system survey data for 2008–2014, the velocity field for the Eurasia reference framework was obtained. Based on the velocity field, the present-day velocities of the blocks and boundary faults were estimated. The results reveal that the movement rates of the Chuan-Qing, South China, Chuan-Dian and Indo-China blocks are(17.02±0.60) mm/a,(8.77±1.51) mm/a,(13.85±1.31) mm/a and(6.84 ± 0.74) mm/a, respectively, and their movement directions are 99.5°, 120.3°, 142.9° and 153.3°, respectively. All blocks exhibit clockwise rotation. The displacement rates of the Xianshuihe, Longmenshan, Anninghe, Zemuhe, Xiaojiang and Red River faults are(7.30±1.25–8.30±1.26) mm/a,(10.07±0.97–11.79±0.89) mm/a,(0.96±0.74–2.98±1.73) mm/a,(2.03±0.49–3.20±0.73) mm/a,(3.45±0.40–6.02±0.50) mm/a and(6.23±0.56) mm/a, respectively. The Xianshuihe, Anninghe, Zemuhe and Xiaojiang faults show leftlateral strike-slip movement, while the Longmenshan and Red River faults show right-lateral strikeslip. These characteristics of the blocks and faults are related to the particular tectonic location and dynamic mechanism.  相似文献   

3.
4.
李勇  ALDENSMORE  周荣军  MA  ELLIS 《地质学报》2005,79(5):608-615
龙门山是青藏高原东缘边界山脉,具有青藏高原地貌、龙门山高山地貌和山前冲积平原三个一级地貌单元。利用数字高程模式图像和裂变径迹年代测定方法研究和计算龙门山晚新生代剥蚀厚度与剥蚀速率,结果表明:3.6 Ma以来龙门山的剥蚀厚度介于1.91-2.16 km之间,剥蚀速率介于0.53-0.60 mm/a之间。在此基础上,开展了该地区岩石圈的弹性挠曲模拟,结果表明龙门山的隆升机制具有以构造缩短隆升和剥蚀卸载隆升相叠合的特点。3.6 Ma之前,龙门山的隆升与逆冲推覆构造负载有关,以构造缩短驱动的构造隆升为特色;3.6 Ma之后,龙门山的隆升与剥蚀卸载驱动的抬升有关,并以剥蚀卸载隆升为特色,进而提出了龙门山晚新生代以来的隆升机制以剥蚀成山作用为主的认识。  相似文献   

5.
There is a massive amount of geomorphic evidence for active tectonics in the Longmen Shan at the eastern margin of the Tibetan plateau. We have surveyed some typical geomorphic markers including the Wenchuan-Maowen, Beichuan-Yingxiu and Pengxian-Guanxian faults, terrace offsets, scarps, fault-controlled saddles, dextral shutter ridges, dextral channel offsets, graben, shatter belts, and pull-apart basins. Electron spin resonance (ESR) and thermoluminescence(TL) ages were obtained using silty sand taken from below the surface of the sediments. According to these data, we calculated the rates of thrusting and strike-slip, and the results indicate that Cenozoic tectonic shortening at the plateau margin is minor with the rate of thrusting less than 1.10 mm/a and the rate of strike-slipping less than 1.46 mm/a. The Longmen Shan is a zone of NNE-trending dextral shear with slip-dip ratio of 6:1-1.3:1. From NW to SE, the thrust component becomes smaller, whereas the strike-slip component becomes larger.  相似文献   

6.
7.
8.
青藏高原东缘活动断裂地质灾害效应研究   总被引:6,自引:0,他引:6  
活动断裂的地质灾害效应是工程地质与地质灾害领域研究的重要内容。本文以第四纪以来构造活动最强烈的青藏高原东缘为例,阐述了活动断裂地质灾害效应的主要表现形式,包括:(1)活动断裂对地形地貌和岩体结构的影响;(2)断裂剧烈活动(地震)诱发地质灾害;(3)断裂蠕滑作用对斜坡应力场和稳定性的影响;(4)断裂活动是地质灾害链的源头,为地质灾害提供物源。上述表现形式及灾害成因机理和分布规律是活动构造区地质灾害防治中需要关注的关键问题。根据青藏高原东缘典型地质灾害案例研究提出,内外动力耦合作用成灾机理是未来地质灾害研究方向,将为活动构造区地质灾害早期识别和防灾减灾提供理论依据。  相似文献   

9.
Eolian dust deposition is intimately related to atmospheric circulation and environmental setting of the source region, and therefore is an invaluable tool for studying the evolutionary history of atmospheric circulation patterns and paleoclimatic change. Identifying the provenance of any eolian deposit is crucial not only for reconstructing the paleoenvironmental history of the dust source region, but also for understanding the paleoclimatic significance of various indices. Loess and paleosol samples from the Garze region on the eastern margin of the Tibetan Plateau(TP) were analyzed for their elemental(major and trace elements) and isotopic(Sm-Nd) geochemistry and compared with those of Northern Chinese(NC) loess formed at the same age. The results show that the geochemical compositions of the Garze loess and paleosol samples are similar to those eolian deposits on the Chinese Loess Plateau(CLP), and also resemble the average UCC. This indicates that the eolian deposits on the eastern margin of the TP were derived from well-mixed sedimentary protoliths that had undergone numerous upper crustal recycling processes, just as with the CLP loess deposits. However, compared with NC loess, the Garze samples have higher ∑REE, Li, Rb, Zr, Cs, Hf and Bi concentrations, higher TiO2/Al2O3, Hf/Nb, La/Nb, Th/Nb and lower K2O/TiO2, Zr/Hf, Ba/Rb ratios. From the Sm-Nd isotopic geochemistry, εNd(0) and 147Sm/144Nd values of Garze loess and paleosol samples are clearly lower than the NC loess. The higher Bi, Zr and Hf concentrations are relevant to the widely distributed acid-magmatic rocks in this region, whereas the higher contents of Li, Cs, Rb are attributed to the high background values of the TP. The geochemical characteristics of the Garze loess and paleosol samples further prove that the local glacial and other Quaternary detrital sediments are predominantly the contributors for the eolian deposits on the eastern margin of the TP. Stable element concentrations and their ratios in the Garze loess and paleosol samples formed at different times have relatively greater variation ranges in comparison with the NC loess, indicating that the source regions for eolian deposits have been unstable since the late Early Pleistocene. We attribute the instability of dust sources to variable earth surface conditions and the changeable TP winter monsoon in direction and intensity, which are in turn related to the uplift of the TP.  相似文献   

10.
A need exists for a reliable and long-term water supply for the 285,000 inhabitants of the Turku area in southwestern Finland. In response to this need, there are plans to replace the present water supply from the surface sources with artificially infiltrated groundwater from a Quaternary esker aquifer called the Virttaankangas aquifer. New sedimentological studies of the Virttaankangas area have revealed the complexities of the esker system and its surrounding glacial, glaciofluvial, and glaciolacustrine geology. This led to the characterization of the hydrogeological units of the aquifer, the result of which has been a three-dimensional (3-D) truly integrated solids model that represents the geometry, interrelationships, and hydrostratigraphy of the study area. The 3-D model was made with EarthVision geologic modeling software. The 3-D geological model of the Virttaankangas aquifer can be used for planning the infiltration of river water into the aquifer and to understand the geologic and geographic boundaries of the hydrogeologic units hosting the groundwater reserve and the geologic relationships between the units. Another major outcome of this study is a powerful visualization tool that will be provided to municipal and government authorities who must understand the geologic complexities involved with water-resource planning prior to their decision making. Electronic Publication  相似文献   

11.
The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.  相似文献   

12.
青藏高原东缘中更新世伸展作用及其新构造意义   总被引:3,自引:0,他引:3  
基于区域TM遥感影像资料解译和野外构造地貌调查以及晚第四纪沉积物光释光测年分析,论述了青藏高原东缘复杂地貌边界带晚第四纪伸展构造及其构造地貌特征。结果显示,伸展构造主要见于下列几个构造带:沿南北走向的安宁河谷地、大凉山构造带、若尔盖盆地、岷江断裂带等。其典型的地貌特征表现为充填晚第四纪沉积物的狭窄河谷。根据盆地沉积物的地层时代和年龄推断,正断作用主要发生在中更新世时期,大约起始于早更新世末期(1.2~0.9Ma),结束于中更新世晚期(100~200ka)。晚更新世以来,构造体制转化为走滑—逆冲机制。青藏东缘中更新世伸展构造作用可能与该地貌边界带晚新生代造山后的高原垮塌有关。  相似文献   

13.
松潘-甘孜地体中的花岗岩主要形成于印支晚期至燕山初期,其主体是扬子地块沿龙门山构造带向松潘-甘孜地体内楔入导致松潘-甘孜地体中下地壳低速层发生部分熔融的结果.虽然在松潘-甘孜地体中多数岩体长轴走向和矿物定向均呈北西向,但过去区调中划分的北西向的金川-理县构造岩浆带不能代表这种楔入作用的产物,而应重新划分为北东向的道孚-金川-小金-黑水构造岩浆带,四姑娘山岩体是这个北东向构造岩浆带中的典型岩体.四姑娘山花岗岩属高Ba-Sr的钙碱性岩石,具有碰撞花岗岩的特征和岛弧花岗岩的某些特征,而非A型花岗岩;其岩浆成分以中下地壳为主并有幔源特质的加入,其锆石普遍具有岩浆锆石的特征.通过对四姑娘山花岗岩体的黑云母花岗闪长岩中的23粒锆石激光探针U-Pb定年,确定其岩浆结晶年龄为燕山早期(191±1)Ma.此年龄对解决龙门山断裂带形成的初始时间具有重要意义.  相似文献   

14.
青藏高原是由印度板块和亚洲板块于50~60 Ma碰撞而形成的全球最高最大的高原,已成为多数国内外学者的共识.然而,关于它的岩石圈变形机制却是长期争论的问题.深地震反射剖面是精细揭示岩石圈结构、分辨变形样式的有效技术.重新处理的松潘地块一西秦岭造山带深地震反射剖面揭示出岩石圈变形的细节,以地壳上部的双重逆冲构造、地壳中部...  相似文献   

15.
青藏高原东缘晚新生代成都盆地物源分析与水系演化   总被引:15,自引:0,他引:15  
成都盆地位于青藏高原东缘,夹于龙门山与龙泉山之间,盆地中充填了3.6Ma以来的大邑砾岩、雅安砾石层和晚更新世—全新世砾石层,其物源均来源于盆地西侧的龙门山,具横向水系和单向充填的特征。本次以物源区分析作为切入点,以岷江和青衣江水系为重点,采用砾岩成分分析、砂岩岩屑成分分析、重矿物分析和砾石的地球化学分析等基本方法,开展青藏高原东缘晚新生代以来的古水系重建工作,研究结果表明,成都盆地主要有两个物源区,其中成都盆地北部的都江堰街子场、崇州白塔山、大邑白岩沟、大邑氮肥厂、彭州丁家湾、彭州葛仙山等剖面中的砾石层在碎屑成分、重矿物和花岗岩砾石的地球化学成分等方面相似,应为古岷江的产物,而其与现代岷江在砾岩成分和重矿物特征等方面的差异性则表明古岷江可能存在改道的现象;成都盆地南部的庙坡剖面和熊坡东剖面中的砾石层在碎屑成分、重矿物和花岗岩砾石的地球化学成分等方面相似,应为古青衣江的产物,但其流向却与现代青衣江的流向不同,表明熊坡背斜是在大邑砾岩沉积之后隆起的,它的隆起迫使古青衣江改道。  相似文献   

16.
青藏高原东缘具有青藏高原地貌、龙门山高山地貌和山前冲积平原三个一级地貌单元 ,本文以岷江作为切入点 ,研究了该地区河流下蚀速率与山脉的隆升作用之间的相互关系。在建立岷江阶地序列的基础上 ,利用阶地高程和热释光年代学测年资料分别定量计算了岷江在川西高原、龙门山和成都盆地的下蚀速率 ,结果表明岷江各河段的下蚀速率明显不同 ,分别为 1.0 7~ 1.6 1mm / a、1.81m m/ a和 0 .5 9mm / a;在龙门山地区岷江的下蚀速率最高 ,约为川西高原地区的 1.5倍 ,约为成都平原地区的 3倍 ;而同一河段不同时期岷江的下蚀速率基本是连续的 ,具有很好的线性关系 ,可作为该河段整个河谷的下蚀速率。基于龙门山的表面隆升速率 (0 .3~ 0 .4 mm / a) ,在约束局部侵蚀基准面和气候变化对阶地形成的控制作用的基础上 ,本文建立了青藏高原东缘岷江下蚀速率与龙门山表面隆升速率之间的线性关系 ,结果表明河流下蚀速率约为山脉表面隆升速率的 5倍。根据龙门山表面在隆升速率和下切速率等方面均大于川西高原 ,并结合龙门山活动构造以走滑作用为主 ,笔者认为青藏高原东缘的边缘山脉以剥蚀隆升为主 ,兼有构造隆升作用。最后 ,根据岷江最大切割深度所需的时间 (3.4 8Ma)和成都盆地最古老的岷江冲积扇大邑砾岩的时间 (3.6 Ma  相似文献   

17.
18.
青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应   总被引:33,自引:0,他引:33  
成都盆地位于青藏高原东缘,夹于龙门山与龙泉山之间,盆地的长轴方向平行于龙门山,呈现为北东—南西向展布的线性盆地。盆地中充填了3.6Ma以来的半固结—松散堆积物,最大厚度为541 m,在垂向上由下部的大邑砾岩、中部的雅安砾石层和上部的上更新统至全新统砾石层组成,其与下覆地层均为不整合接触,显示该盆地是一个单独的成盆期,并非是在中生代前陆盆地基础上形成的继承性盆地。在垂直于龙门山造山带方向上,成都盆地具不对称的楔形结构,沉积基底面整体向西呈阶梯状倾斜,盆地中充填的碎屑物质均来源于盆地西侧的龙门山,具横向水系和单向充填的特征;而且盆地的沉降中心具有逐渐向远离造山带方向迁移的特征,显示盆地的挤压方向垂直于龙门山主断裂,造成了成都盆地在垂直于造山带方向上的构造缩短。在平行于龙门山造山带方向上,成都盆地具有一系列的北东向延伸的次级凸起和凹陷,凹陷和凸起相间分布,且在空间上呈斜列形式展布于盆地的底部,其中次级凹陷(沉降中心)和冲积扇具有向平行龙门山造山带方向迁移的特征,表明成都盆地西缘的龙门山断裂具有右旋走滑的特征。鉴于以上特征,认为成都盆地是在龙门山造山带晚新生代走滑与逆冲的联合作用下形成的走滑挤压盆地。  相似文献   

19.
Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics and earthquake occurrences. In this paper, using in situ stress measurement results obtained by hydraulic fracturing in the vicinity of the Longmenshan fault zone before and after the Wenchuan Ms 8.0 earthquake and finite element modeling, the variation of stress state before and after the Wenchuan Ms 8.0 earthquake is investigated. The results show that the shear stress, which is proportional to the difference between principal stresses, increases with depth and distance from the active fault in the calm period or after the earthquakes, and tends to approach to the regional stress level outside the zone influenced by the fault. This distribution appears to gradually reverse with time and the change of fault properties such as frictional strength. With an increase in friction coefficient, low stress areas are reduced and areas with increased stress accumulation are more obvious near the fault. In sections of the fault with high frictional strengths, in situ stress clearly increases in the fault. Stress accumulates more rapidly in the fault zone relative to the surrounding areas, eventually leading to a stress field that peaks at the fault zone. Such a reversal in the stress field between the fault zone and surrounding areas in the magnitude of the stress field is a potential indicator for the occurrence of strong earthquakes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号