首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the 1︰50000 active fault geological mapping, combining with high-precision remote imaging, field geological investigation and dating technique, the paper investigates the stratum, topography and faulted landforms of the Huashan Piedmont Fault. Research shows that the Huashan Piedmont Fault can be divided into Lantian to Huaxian section (the west section), Huaxian to Huayin section (the middle section) and Huayin to Lingbao section (the east section) according to the respective different fault activity. The fault in Lantian to Huaxian section is mainly contacted by loess and bedrock. Bedrock fault plane has already become unsmooth and mirror surfaces or striations can not be seen due to the erosion of running water and wind. 10~20m high fault scarps can be seen ahead of mountain in the north section near Mayu gully and Qiaoyu gully, and we can see Malan loess faulted profiles in some gully walls. In this section terraces are mainly composed of T1 and T2 which formed in the early stage of Holocene and late Pleistocene respectively. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These indicate that in this section the fault has been active in the late Pleistocene and its activity becomes weaker or no longer active after that. In the section between Huaxian and Huayin, neotectonics is very obvious, fault triangular facets are clearly visible and fault scarps are in linear distribution. Terrace T1, T2 and T3 develop well on both sides of most gullies. Dating data shows that T1 forms in 2~3ka BP, T2 forms in 6~7ka BP, and T3 forms in 60~70ka BP. All terraces are faulted in this section, combing with average ages and scarp heights of terraces, we calculate the average vertical slip rates during the period of T3 to T2, T2 to T1 and since the formation of T1, which are 0.4mm/a, 1.1mm/a and 1.6mm/a, and among them, 1.1mm/a can roughly represent as the average vertical slip rate since the middle stage of Holocene. Fault has been active several times since the late period of late Pleistocene according to fault profiles, in addition, Tanyu west trench also reveals the dislocation of the culture layer of(0.31~0.27)a BP. 1~2m high scarps of floodplains which formed in(400~600)a BP can be seen at Shidiyu gully and Gouyu gully. In contrast with historical earthquake data, we consider that the faulted culture layer exposed by Tanyu west trench and the scarps of floodplains are the remains of Huanxian MS8½ earthquake. The fault in Huayin to Lingbao section is also mainly contacted by loess and mountain bedrock. Malan loess faulted profiles can be seen at many river outlets of mountains. Terrace geomorphic feature is similar with that in the west section, T1 is covered by thin incompact Holocene sand loam, and T2 is covered by Malan loess. OSL dating shows that T2 formed in the early to middle stage of late Pleistocene. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These also indicate that in this section fault was active in the late Pleistocene and its activity becomes weaker or no longer active since Holocene. According to this study combined with former researches, we incline to the view that the seismogenic structure of Huanxian MS8½ earthquake is the Huashan Piedmont Fault and the Northern Margin Fault of Weinan Loess, as for whether there are other faults or not awaits further study.  相似文献   

2.
临潼-长安断裂带晚第四纪以来的活动性   总被引:1,自引:0,他引:1  
对临潼-长安断裂带进行了详细的野外调查,以期掌握其最新活动年代和第四纪以来的活动特征。该断裂总体走向NE,以张性垂直运动为主,断面明显错断了黄土中的第1层古土壤S1,说明其晚更新世以来仍在活动,并且北段和中段的活动性比南段强,但是错距大多<2m,滑动速率较小,考虑到临潼-长安断裂带由多条次级断层组成,其整体活动性应该比我们计算得到的局部断层滑动速率大得多。断层错距自上而下成递增趋势,并且根据不同地层年代计算出的滑动速率基本一致,因此该断裂带自中更新世晚期以来极可能以垂向蠕滑活动为主  相似文献   

3.
李光涛  苏刚  程理  李峰  吴昊 《地震地质》2019,41(3):545-560
中甸-大具断裂南东段位于哈巴和玉龙雪山北麓,属于川西北次级块体西南边界,断裂总体走向310°~320°,是一条重要的边界断裂。了解该断裂的活动性质、活动时代和滑动速率等对分析川西北次级块体运动,研究该断裂与玉龙雪山东麓断裂的交切关系等问题具有重要意义。文中基于1︰5万活动断层地质填图,对断裂沿线地层地貌、陡坎地貌、地表破裂、典型断层剖面以及河流阶地等进行了详细的研究。研究表明:1)中甸-大具断裂南东段按几何结构、断错地貌表现、断裂活动性可分为马家村—大具次级段和大具—大东次级段。2)通过野外地质调查发现,马家村—大具次级段断错了全新世冲洪积扇,形成了地表破裂,为全新世活动段;而大具—大东次级段虽然也断错了晚更新—全新世地层,但其断错规模及滑动速率均较小,由此认为其全新世以来活动较弱。3)通过分析断裂沿线断层陡坎、水平位错及地表破裂等地质地貌问题,认为马家村—大具次级段的活动性质为右旋走滑兼正断,其晚更新世以来的垂直滑动速率为0.4~0.8mm/a,水平滑动速率为1.5~2.4mm/a;大具—大东次级段以右旋走滑为主、正断为辅,其晚更新世晚期以来的垂直滑动速率为0.1mm/a。4)在大具盆地内发现的NW向地表破裂带的形成时代很年轻,不排除是1966年中甸6.4级地震或1996年丽江7.0级地震造成的地表破裂。  相似文献   

4.
甘孜-玉树断裂带东南段晚第四纪活动性研究   总被引:2,自引:1,他引:2       下载免费PDF全文
以甘孜-玉树断裂带东南段的地质地貌为研究对象,在遥感解译的基础上,通过对典型地区的详细野外调查和探槽研究对该段晚第四纪活动性进行研究。在断裂沿线的生康乡、仁果乡、错阿乡、日阿乡进行了断错地貌分析和晚第四纪滑动速率计算, 生康区的水平滑动速率为(7.6±0.5)mm/a, 垂直滑动速率为(1.1±0.1)mm/a; 仁果区的水平滑动速率为(8.0±0.3)mm/a,垂直滑动速率为(1.1±0.1)mm/a; 错阿区的水平滑动速率为(10.3±0.4)mm/a; 日阿区的水平滑动速率为(10.8±0.8)mm/a, 垂直滑动速率为(1.1±0.1)mm/a。在仁果乡和错阿乡进行了探槽研究,两处探槽都揭示了多次古地震事件,虽然揭露的断层构造样式有所不同,但总体上都是以走滑为主兼有一定的逆冲分量。综合古地震事件和滑动速率分析表明,甘孜-玉树断裂带东南段晚第四纪尤其是全新世以来活动剧烈。  相似文献   

5.
天津断裂第四纪活动性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
天津断裂分为天津南断裂和天津北断裂。根据人工地震探测结果,分别在天津静海县城西、西青区炒米店村、小南河村以及宁河县朱头淀村布设了4条钻孔剖面,对这2条断裂开展了钻孔勘探工作。经微体古生物鉴定,获得了各钻孔的海相层位置;经地层年代测试,确定了第1、第2和第3海相层的年代;通过以海相层为标志层的地层对比,并结合小南河村BZ1、TN3孔古地磁的测试结果,对这2条断裂的活动性进行了分析研究。结果表明,天津南断裂晚更新世以来未发现有过活动的迹象,其最新活动年代可能在中更新世。而天津北断裂也未发现晚更新世以来存在活动的迹象,该断裂在早更新世早期可能有过活动。由此可见,天津南断裂活动性可能要强于天津北断裂。同时发现,第2、第3、第4海相层在不同的地区存在不同程度的缺失现象。因此,在将其用于地层对比时,必须同时确定各海相层的地质年代,否则对比结果可能会出错。对于发生年代存在争议的第2海相层,认为其形成时间应在7万a左右。  相似文献   

6.
山西峨嵋台地北缘断裂晚第四纪活动性   总被引:3,自引:1,他引:3  
通过1/5万活断层地质填图,对山西峨嵋台地北缘断裂晚第四纪活动性进行了详细研究。以谭家庄、南柳附近的2个阶区为界,将断裂分为西、中、东3段。谭家庄以西该断裂中更新世早期有过活动,之后未见明显活动迹象。谭家庄至南柳之间断裂晚更新世以来活动强烈,全新世仍有活动,最新活动发生在(2.00~1.29)ka BP,晚更新世晚期以来滑动速率≥0.36mm/a。南柳至西彰坡段晚更新世以来活动明显,尚未发现全新世活动的直接证据,晚更新世以来断层滑动速率≥0.1mm/a。  相似文献   

7.
The Ganzi-Yushu Fault, the boundary of Bayan Har active tectonic block, Qiantang active tectonic block and Sichuan-Yunan active tectonic block, is a sinistral strike-slip fault zone with intensive Holocene activity. Thus, the study of activity characteristics and rupture behavior of paleoearthquakes in the late Quaternary on the Ganzi-Yushu Fault is of fundamental importance for understanding the future seismic risk of this fault. The southeast section of Ganzi-Yushu Fault is made up of three segments of Ganzi, Manigange and Dengke, where a MS7.3 earthquake in 1866, a MS7.7 earthquake in 1854 and a MS7.3 in 1896 occurred, respectively. There is still lack of in-depth study on the active features and the cascading rupture possibility of these segments, which hindered the evaluation of seismic risk for the southeast section of Ganzi-Yushu Fault. By the means of field geological survey and micro topography measurement, this paper studied the geological and geomorphological features of the southeast section of the Ganzi-Yushu Fault. The results show that the Ganzi and Dengke segments show obvious extension movement, in addition to the left-lateral movement. For Manigange segment, the characteristics of the movement are mainly left-lateral strike-slip and thrusting, and the maximum vertical displacement of the Holocene strata is greater than 2m. In part areas, the movement is normal faulting, which perhaps relates to the left stepping zone in the local stress environment. Therefore, combining the research results such as the fracture distribution in different motion characteristics, rupture behavior of paleoearthquakes, and the distribution of historical earthquake surface ruptures, we divide the southeast section of Ganzi Yushu Fault into Ganzi, Manigange and Dengke segment, and consider the Yakou and the Dengke Basin as the stepovers and the segments' boundaries. As the small scale of impermanent barriers including Dengke Basin and the ridge near Yakou, of which the width is about 1~2km, they may be broken through in great earthquake rupture in future. A trench was excavated in Zhuqing township to investigate the paleoearthquakes on the Manigange segment, radiocarbon dating was employed and 3 paleoseismic events were revealed in the Zhuqing trench, which are the seismic events occurring respectively at 3875~3455BC, after 775BC, and the latest one that ruptured the surface. Compared with the previous results of paleoseismology in the southeast section of Ganzi-Yushu Fault, it is found that the paleoseismic events in the Manigange segment are obviously different with that in Ganzi segment and Dengke segment. Due to the lack of sufficient data on the southeast section of the Ganzi-Yushu Fault, it still needs further discussion whether the cascade-rupturing between these segments exists.  相似文献   

8.
滇西北通甸-巍山断裂中段的晚第四纪滑动速率   总被引:2,自引:0,他引:2  
通甸-巍山断裂属于红河断裂带的分支断裂,目前对该断裂中段的晚第四纪活动特征研究较少。野外地质地貌调查和年代学研究结果表明,通甸-巍山断裂中段是以右旋走滑运动为主,兼有张性正断的全新世活动断裂,其最新活动时代距今约2.2ka。晚更新世中晚期以来断裂中段平均水平滑动速率为1.25mm/a,全新世晚期以来垂直运动趋于增强。该研究不仅为该断裂的地震危险性评价工作提供了基础资料,而且有助于理解川滇菱形块体西南边界构造变形的空间分配特点  相似文献   

9.
龙门山断裂带北段第四纪活动的地质地貌证据   总被引:19,自引:7,他引:19  
以龙门山断裂带北段中的青川断裂、茶坝-林庵寺断裂沿线的地质地貌为研究对象,在青川断裂沿线的土关铺、大安,茶坝-林庵寺断裂上的薛家沟、胡家坝等地,对断裂附近的河流地貌进行了详细的构造地貌制图。龙门山断裂带北段所在地区的河流一般发育5级阶地,T1阶地拔河高度3~5m,为全新世堆积阶地。T2阶地拔河高度10m左右,为晚更新世基座阶地。T3阶地拔河高度一般为30~35m,为晚更新世早期形成的基座阶地。T4阶地拔河高度60~70m,残留的阶地砾石层中花岗岩、砂岩砾石已经被强风化,只保留砾石的形态。T5阶地拔河高度为90m左右,阶地堆积物被剥蚀殆尽。青川断裂、茶坝-林庵寺断裂在河流的T4和T5阶地上形成宽30~180m的断层槽地,深度达8~20m,T4阶地砾石层底面落差达10~15m。T3阶地上不发育断层槽地,或断层两盘的T3阶地拔河高度一致,一些地段断层被T3阶地砾石层覆盖。因此认为,这两条断裂在T3阶地形成之前,T4阶地形成之后有过强烈的活动  相似文献   

10.
郯庐断裂带白山-卅铺段第四纪以来的活动习性   总被引:1,自引:1,他引:1       下载免费PDF全文
根据构造地貌遥感解析,发现郯庐断裂带沿庐江白山到桐城卅铺一线显示1组平行断层,现场地震地质调查验证其为1组活动断层。通过断层剖面观测、样品采集及样品测试分析和宏微观构造分析,结果表明,郯庐断裂带在白山—卅铺一带第四纪以来仍具有黏滑、蠕滑交替的变形活动。其中,在柯坦—卅铺一带,最年轻的水系被NE向断层组右旋扭折,其断层物质的微观观测和测龄结果表明该断裂段第四纪时的活动具有脆、塑性过渡变形特征,强烈活动时间处于早、中更新世;而白山剖面断层泥年龄测试结果则反映相应断层段在中、晚更新世曾有过较强烈的活动。断层泥超微(SEM)和显微观测结果亦表明该断裂段曾发生黏滑、蠕滑交替的构造变形事件,且表现为先黏滑后蠕滑;结合水系呈现缓慢扭折表征,近年来沿断裂有不少微震发生,表明郯庐断裂带在白山—卅铺段的最新滑移方式主要表现为蠕滑,也就是说,该段积累的应力以蠕滑或微震等方式缓慢释放,据此推测未来一定时期内不易孕育强烈地震  相似文献   

11.
二台断裂南段的第四纪活动   总被引:1,自引:1,他引:1  
柏美祥  尹光华 《内陆地震》1991,5(4):289-295
二台断裂南段在乌伦古河流域分叉、折尾,显示出破裂末端特征。据断层活动资料,自晚更新世中期以来南段有5次活动,主要为右旋逆走滑活动,末端为右旋正走滑。水平错动幅度达3个量级4个梯度,最大达350m。1984—1988年形变测量资料表明该段目前正以2.1mm/年的速率作左旋旷动。各种古地震活动标志表明南段大震平均复现期为3500±290年。  相似文献   

12.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.  相似文献   

13.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

14.
The Yarlung Tsangbo fault zone, one of the most important geological interfaces in the Yarlung Tsangbo suture zone which is a huge geotectonic boundary with nearly east-west-trending in southern Tibet Plateau, has undergone a long-term tectonic evolution. Studying this fault zone can help us understand the development and evolution history of the suture zone and the tectonic mechanism of subduction-collision about the Tibet Plateau, so it has always been a hot topic in the field of geology. Most of existing data suggest that the current tectonic activity in southern Tibet is given priority to the rift system with nearly north-south-trending, and the Yarlung Tsangbo fault zone with nearly east-west-trending has relatively weaker activity since late Quaternary. There are only some evidences of Holocene activity found in the Lulang town section near eastern Himalayan syntaxis, and there are few reports about the reliable geological evidences of late Quaternary activity of the section on the west of Milin County of the fault zone. Based on image interpretation, field investigation and chronological method, we found several fault profiles along the Yarlung Tsangbo fault zone near the Angren Lake in this study. These profiles reveal that loose fault gouge has been developed on the fault plane which nearly extends to the surface and offsets the loess sediments and its overlying alluvial-proluvial gravels. The loess is characterized by coarser grains, higher content of fine sand and tiny small gravels. The results of the two OSL dating samples collected in the loess are(94.68±6.51)ka and(103.84±5.14)ka respectively, showing that the loess revealed at the Angren site should be the middle-late Pleistocene sand loess distributed on the high-terraces along the Yarlung Tsangpo River. Consequently, the Angren segment of the Yarlung Tsangpo fault zone is active since the late Quaternary. In addition, synchronous left-lateral offsets of a series of small gullies and beheaded gullies can be seen near the profiles along the fault, which are the supporting evidence for the late Quaternary activity of the fault. However, the segment with obvious geomorphology remains is relatively short, and no evidence of late Quaternary activity have been found in other sections on the west of Milin County of the Yarlung Tsangpo fault zone. Existing data show that, in the southern Tibet, a series of near NS-trending rift systems are strongly active since the late Quaternary, cutting almost all of the near east-west-trending tectonic belts including the Yarlung Tsangpo fault zone. In addition, majority of the earthquakes occurring in southern Tibet are related to the NS-trending rift systems. Tectonic images show that the Angren segment locates between the Shenzha-Dingjie rift and the Dangreyong Lake-Gu Lake rift. These two adjacent rifts are special in the rift system in southern Tibet:Firstly, the two rifts are located in the conversion position of the trend of the whole rift system; Secondly, the size of the two rifts varies significantly between the north side and the south side of the Yarlung Tsangbo fault zone. Thirdly, the Shenzha-Dingjie rift seems to be of right-lateral bending, while the Dangreyong Lake-Gu Lake rift shows left-lateral bending. These characteristics may lead to the fact that the amount of absorption and accommodation of the rift activities in the north side of the Yarlung Tsangbo fault zone is larger than that in the south side during the migration of the plateau materials, leading to the differential movement of the block between the two sides of the fault zone. Therefore, the Yarlung Tsangbo fault zone possesses the accommodating tectonic activity, of course, the intensity of this accommodating activity is limited and relatively weaker, which may be the reason why it is difficult to find large-scale tectonic remains characterizing the late Quaternary activity along the fault zone. The scale of the rift system in southern Tibet is systematically different between the two sides of the Yarlung Tsangbo fault zone, so it cannot be ruled out that there are also weak activities similar to the Angren segment in other sections of the fault zone.  相似文献   

15.
龙门山断裂带北段晚第四纪活动性讨论   总被引:43,自引:11,他引:43       下载免费PDF全文
在野外考察的基础上 ,结合所采集的各条断裂之上的覆盖物或断层带物质的热释光 (TL)或电子自旋共振 (ESR)样品年龄 ,对龙门山断裂带北段的晚第四纪活动性进行了分析 ,认为 :后山断裂在第四纪早 -中期曾有过活动 ,晚更新世以来已不再活动 ;中央断裂早更新世或前第四纪是活动的 ;前山断裂在白龙江以北变成一些小的、零星分布的断裂 ,它们在第四纪早期以前有过活动。而已有研究表明龙门山断裂带中段和西南段晚第四纪以来仍在活动。造成龙门山断裂带不同段落新活动时代不同的主要原因 ,可能是区域应力场的变化所导致的活动地块边界的变化。龙门山断裂带的北段现在已不构成活动块体的边界 ,加之岷山隆起对龙门山断裂带东北段的屏障作用 ,使得龙门山断裂带北段活动减弱。而龙门山推覆构造带中南段和岷山隆起构造带共同成为块体持续挤压作用的东界。这为研究青藏高原的运动学及动力学等问题提供了重要信息  相似文献   

16.
通过分析阿尔金断裂带西段车尔臣河出山口以西 85°~ 86°E的高精度SPOT卫星影像 ,结合野外考察和年代学研究 ,对阿尔金断裂带西段 3个典型走滑断层的断错地貌进行了研究。在库拉木拉克 ,阿尔金断裂带西段自 (6 0 2± 0 4 7)kaBP以来的左旋滑动速率为 (11 6± 2 6 )mm/a ,自 (15 6 7± 1 19)kaBP以来的左旋滑动速率为 (9 6± 2 6 )mm/a ;阿羌牧场附近 ,自 (2 0 6± 0 16 )kaBP以来的左旋滑动速率为 (12 1± 1 9)mm/a ;达拉库岸萨依附近 ,自 (4 91± 0 39)kaBP以来的左旋滑动速率为(12 2± 3 0 )mm/a。由此得到阿尔金断裂带全新世以来的平均滑动速率约为 (11 4± 2 5 )mm/a。以阿尔金断裂带走向N75°E计算 ,阿尔金断裂带西段左旋走滑所吸收的青藏高原SN向缩短速率为 (3 0±0 6 )mm/a  相似文献   

17.
珠江三角洲晚第四纪垂直构造运动速率   总被引:8,自引:1,他引:8       下载免费PDF全文
根据珠江三角洲 16 6个第四纪古三角洲沉积物的测年数据 ,在扣除了古海平面变化、沉积层的压实效应和地壳静力均衡沉降等非构造因素的影响后 ,估算出晚第四纪以来三角洲地区的垂直构造运动速率。估算按北东、近东西和北西向 3组断裂所切截的 11个断块构造区分别进行。结果表明 ,位于三角洲南部的斗门断块和中部的广州 -番禺断块的活动速率相对较高 ,这个特征得到了三角洲晚第四纪古地理演变、断层活动年代学和地震活动研究的初步验证  相似文献   

18.
Along the northern piedmont of Mt. Lishan, the characteristics and locations of the active normal Lishan fault in west of Huaqing Pool provide important evidences for determining the seismotectonic environment, seismic stability evaluation of engineering in the eastern Weihe Basin. After reviewing the results from high-density resistivity method, seismic profile data, geological drillhole section and trenching in west of the Huaqing Pool, it is found that the strike of western normal Lishan Fault changes from EW direction at the eastern part to the direction of N60°W, and the fault consists of two branches, dipping NE with a high dip angle of~75°. The artificial shallow seismic profile data reveals that the attitude of strata near Lishan Fault mainly dips to south, which is presumed to be related to the southward tilt movement of Mt. Lishan since the Cenozoic. The section of geological drillhole reveals that since the late middle Pleistocene, the displacement of the paleo-soil layer S2 is about 10m. And the maximum displacement of western Lishan Fault recorded in the paleo-soil layer S1 reaches 7.8m since the late Pleistocene. In addition, evidences from trench profile show that the western Lishan Fault was active at least 3 times since Malan loess deposition with 14 C dating age(32 170±530)Cal a BP. The multiple activities of the Lishan Fault result in a total displacement about 3.0m in the Malan loess layer L1. The latest activity of the western Lishan Fault produced a displacement of about 0.9m in the early Holocene loess layer L0((8 630±20)Cal a BP)and caused obvious tensile cracks in the Holocene dark leoss layer S0((4 390±20)Cal a BP). Briefly, we have obtained a vertical movement rate of about 0.11~0.19mm/a since the Holocene((8 630±20)Cal a BP)in the western extension of the Lishan Fault, the recurrence interval of earthquakes on the fault is about(10.7±0.5)ka, and the co-seismic surface rupture in a single event is inferred to be about 0.9m.  相似文献   

19.
The Shanxi Graben System is one of the intracontinental graben systems developed around the Ordos Block in North China since the Cenozoic, and it provides a unique natural laboratory for studying the long-term tectonic history of active intracontinental normal faults in an extensional environment. Comparing with the dense strong earthquakes in its central part, no strong earthquakes with magnitudes over 7 have been recorded historically in the Jin-Ji-Meng Basin-and-Range Province of the northern Shanxi Graben System. However, this area is located at the conjunction area of several active-tectonic blocks(e.g. the Ordos, Yan Shan and North China Plain blocks), thus it has the tectonic conditions for strong earthquakes. Studying the active tectonics in the northern Shanxi Graben System will thus be of great significance to the seismic hazard assessment. Based on high-resolution remote sensing image interpretations and field investigations, combined with the UAV photogrammetry and OSL dating, we studied the late Quaternary activity and slip rate of the relatively poorly-researched Yanggao-Tianzhen Fault(YTF)in the Jin-Ji-Meng Basin-and-Range Province and got the followings: 1)The YTF extends for more than 75km from Dashagou, Fengzhen, Inner Mongolia in the west to Yiqingpo, Tianzhen, Shanxi Province in the east. In most cases, the YTF lies in the contact zone between the bedrock mountain and the sediments in the basin, but the fault grows into the basin where the fault geometry is irregular. At the vicinity of the Erdun Village, Shijiudun Village, and Yulinkou Village, the faults are not only distributed at the basin-mountain boundary, we have also found evidence of late Quaternary fault activity in the alluvial fans that is far away from the basin-mountain boundary. The overall strike of the fault is N78°E, but the strike gradually changes from ENE to NE, then to NWW from the west to the east, with dips ranging from 30° to 80°. 2)Based on field surveys of tectonic landforms and analysis of fault kinematics in outcrops, we have found that the sense of motion of the YTF changes along its strikes: the NEE and NE-striking segments are mainly normal dip-slip faults, while the left-laterally displaced gullies on the NWW segment and the occurrence characteristics of striations in the fault outcrop indicate that the NWW-striking segment is normal fault with minor sinistral strike-slip component. The sense of motion of the YTF determined by geologic and geomorphic evidences is consistent with the relationship between the regional NNW-SSE extension regime and the fault geometry. 3)By measuring and dating the displaced geologic markers and geomorphic surfaces, such as terraces and alluvial fans at three sites along the western segment of the YTF, we estimated that the fault slip rates are 0.12~0.20mm/a over the late Pleistocene. In order to compare the slip rate determined by geological method with extension rate constrained by geodetic measurement, the vertical slip rates were converted into horizontal slip rate using the dip angles of the fault planes measured in the field. At Zhuanlou Village, the T2 terrace was vertically displaced for(2.5±0.4)m, the abandonment age of the T2 was constrained to be(12.5±1.6)ka, so we determined a vertical slip rate of(0.2±0.04)mm/a using the deformed T2 terrace and its OSL age. For a 50°dipping fault, it corresponds to extension rate of(0.17±0.03)mm/a. At Pingshan Village, the vertical displacement of the late Pleistocene alluvial fan is measured to be(5.38±0.83)m, the abandonment age of the alluvial fan is(29.7±2.5)ka, thus we estimated the vertical slip rate of the YTF to(0.18±0.02)mm/a. For a 65° dipping fault, it corresponds to an extension rate of(0.09±0.01)mm/a. Ultimately, the corresponding extensional rates were determined to be between 0.09mm/a and 0.17mm/a. Geological and geodetic researches have shown that the northern Shanxi Graben System are extending in NNW-SSE direction with slip rates of 1~2mm/a. Our data suggests that the YTF accounts for about 10% of the crustal extension rate in the northern Shanxi Graben System.  相似文献   

20.
南口-孙河断层活动性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
车兆宏 《地震地质》1994,16(2):115-120
依据大地测量资料,分析研究了南口-孙河断层的活动性及其对区域构造活动的控制作用。研究认为,南口-孙河断层现今仍有活动,东三旗以西为张性反扭。该断层对首都圈构造活动具有控制作用,为一主干断层,近期活动增强。在首都圈构造活动性研究及地震趋势预测中,对南口-孙河断层必须予以足够的重视  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号