首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
南盘江盆地在早古生代加里东造山作用基础上,于海西-印支期经历了一个完整的威尔逊旋回,即由早期裂谷(D-P_1)、晚期裂谷和被动大陆边缘(P_2-T_1)、前陆盆地(T_2-T_3)。通过对该盆地南部早三叠世初期玄武岩的稀土元素分析,证实在盆地演化过程中确实有过洋壳生成。该盆地在中晚三叠世发展为前陆盆地表明,扬子板块与印支板块曾沿黑水河断裂带发生过碰撞造山。  相似文献   

2.
西昆仑-塔西南坳陷晚古生代以来的沉积构造演化   总被引:6,自引:2,他引:4  
方爱民  马建英  王世刚  赵越  胡健民 《岩石学报》2009,25(12):3396-3406
自柯克亚深层油气勘探取得突破以来,塔西南坳陷一直受到各类地质学家的广泛关注,有关该盆地的形成和演化历史及其油气资源评价近年来更是成为人们的研究热点.本文在总结前人资料的基础上,探讨塔西南和西昆仑地区自晚古生代以来所经历的构造及沉积格架的演变过程,对塔西南坳陷性质及其演化阶段划分所存在的争议进行了归纳,分析了塔西南-西昆仑这一盆山体系形成和演化中的构造变形和沉积记录.总体来说,根据现有沉积和构造变形资料,中生代之前西昆仑和塔西南坳陷分别处于同一构造背景下的不同沉积单元;二者之间盆山体系的形成主要自晚侏罗世-早白垩世,中-上新世是造盆造山作用机制发生重大转折的时期,或者说早更新世末的构造运动基本上奠定了西昆仑.塔里木盆地南缘现今的盆-山构造格架.  相似文献   

3.
晚古生代—中三叠世右江盆地的格局和转换   总被引:6,自引:0,他引:6  
晚古生代—中三叠世右江盆地是在夷平的南华加里东造山带基础上再生裂陷的大陆边缘盆地,该盆地的形成与金沙江—哀牢山古特提斯洋盆关系密切,是一个具有台地与台间海槽相间结构的大陆边缘裂谷盆地。右江盆地自早泥盆世埃姆斯晚期开始裂陷,到石炭纪盆地与越北地块之间出现一个与古特提斯洋相关的局限小洋盆或深海盆。至二叠纪,该洋盆开始向西南俯冲于越北地块之下,形成活动大陆边缘。早三叠世晚期以后,随着该洋盆的闭合和碰撞造山,在凭祥、那坡等地出现同碰撞型的火山活动,右江盆地也于中三叠世转变为以复理石为特征的前陆盆地。因此右江盆地经历了裂谷盆地(早泥盆世晚期—晚泥盆世)、被动大陆边缘(早石炭世—早三叠世)、前陆盆地(中三叠世)的构造演化阶段。  相似文献   

4.
鹤庆—洱源地区位于扬子板块西缘,西邻“三江”结合带,晚二叠世—晚三叠世经历了完整的盆-山转换过程。通过分析该区地层岩性组合及沉积环境,结合构造事件,厘清了区内盆-山转换的时间格架及各阶段盆地沉积响应。研究结果表明: 区内盆地演化可分为陆内裂谷盆地、坳陷盆地和前陆盆地3个阶段; 裂谷盆地阶段沉积形成了巨厚的玄武岩沉积; 坳陷盆地阶段依次沉积了青天堡组碎屑岩、北衙组灰岩和白云岩; 前陆盆地阶段形成了中窝组和松桂组不整合界面及粗碎屑砾岩。研究成果对研究扬子西缘和“三江”特提斯构造带盆-山演化具有重要的科学意义。  相似文献   

5.
新疆博格达山的构造演化及其与油气的关系   总被引:4,自引:1,他引:4  
博格达山的构造演化及其造山作用的时间是一个长期争议且缺乏系统研究的问题。在野外调查的基础上,充分吸收前人成果,综合运用岩浆岩地球化学特征、不整合-沉积旋回、古流向及沉积物扩散方向等分析手段,对博格达山的构造演化进行了精细的剖析。结果表明:博格达山的构造演化主要经历了3期构造反转,即中-晚石炭世的裂陷海槽与晚石炭世末的弱造山期、早-中二叠世的裂陷盆地与晚二叠世-三叠纪和晚三叠世末的古博格达山隆升-夷平期以及早-中侏罗世的弱伸展盆地与晚侏罗世以来的现今博格达山阶段性隆升期;博格达山南缘柴窝堡凹陷地区印支期形成的NE向构造是油气勘探的有利区带。  相似文献   

6.
华南印支期碰撞造山--十万大山盆地构造和沉积学证据   总被引:18,自引:9,他引:18  
十万大山盆地是云开造山带前陆地区的一个窄长的晚二叠世—中三叠世沉积盆地,位于扬子与华夏陆块拼接位置的西南端。十万大山盆地晚二叠世—中三叠世沉积由巨厚的磨拉石建造组成,并构成多个向上变粗和向上变细的构造-地层层序。云开造山带及前陆冲断带上泥盆统至下二叠统中发育了大量的印支期形成的薄皮褶皱和冲断构造。这些指示扬子和华夏陆块在印支期发生了强烈陆内碰撞与会聚及前陆盆地的沉积作用。P2 /P1 之间的不整合面是伸展构造向挤压构造转换的转换面,为华南印支期碰撞挤压造山或活化造山的序幕。T3 /T2 之间不整合面是挤压构造向伸展构造转换的转换面,是印支期活化挤压造山结束的界面,标志着晚二叠世开始的碰撞造山作用的结束。华南内部晚二叠世—中三叠世构造运动性质及转换与当时华南南缘存在的古特提斯洋的闭合及印支板块与华南陆块的碰撞作用有关。  相似文献   

7.
十万山盆地位于广西西南部,大地构造位置属于华南板块的西北缘,是在华南板块与杨子板块拼接的加里东运动之后,早古生代华南洋再一次打开形成被动大陆边缘。晚二叠世末,该地区变成孤后盆地,进一步转化成前陆盆地。在盆山转换过程中,经历了三次沉积-构造盆山转换过程:泥盆纪-二早叠世分地新生与被动大陆边缘拉张裂谷;晚二叠世与中三叠世间盆地构造性质转换与前陆盆地;晚三叠世至侏罗纪的晚期前陆磨拉石沉积。在碎屑岩陆架沉积阶段,生成碎屑岩烃源岩层。在碳酸盐台地沉阶段,发育硝屑灰岩、藻灰岩、礁灰岩和暴露作用生成的白云岩储集岩。因而其早期被动大陆边缘阶段构了古生新储组合。前陆盆地早期在前渊盆地内沉积了一套碎屑岩烃源岩。它与早期的储集层构成了新生古储组合。同时也对下伏地层起到了封闭作用。沉积地层逐层向克拉通斜坡上超覆,发育地层圈闭。前渊阶段中期快速沉积的巨厚的复理石沉积和晚期快速沉积形成的磨拉石沉积有利于早期沉积的迅速埋藏、成熟和保存。  相似文献   

8.
南黄海海域晚古生代—新生代沉积演化特征   总被引:1,自引:0,他引:1  
南黄海地区发育古生界-第四系沉积。加里东运动使华南褶皱带与扬子地台拼接,在下扬子地台的主体部分,形成一个广阔稳定的后加里东台地。早中泥盆世台地处于剥蚀夷平阶段。晚泥盆世开始接受内陆河流相沉积。中、晚石炭世,海侵加强,包括勿南沙隆起区在内的整个南黄海成为浅海环境,接受碳酸盐岩沉积。早、晚二叠世之间的东吴运动,引起裂陷和陆棚的沉积分异,湖泊-滨岸沉积发育,并形成多个煤层。早三叠世早期,下扬子区大幅沉降,全区遭受海侵,台地灰岩、浅海灰泥岩沉积区占据了现今的黄南盆地、中部隆起及黄北盆地的大部分区域。至中三叠世早期,海水大规模退出苏浙皖区,南黄海演变为潮坪,沉积了较厚的碳酸盐岩,局部地区出现渴湖环境;晚期,海水全部退出苏浙皖区,开始沉积以河、湖相为主的黄马青组红色碎屑岩,至此结束了海相沉积历史。印支运动早期,后加里东地台的南侧产生裂谷,北侧为边缘坳陷。印支运动晚期,南侧裂谷伴随着郯庐断裂的左旋走滑而进一步扩大和裂陷,形成黄南盆地。中三叠世末,随扬子地台与华北地台碰撞加剧,苏鲁造山带形成并不断上升,在其南缘形成前陆盆地。中生代黄北盆地和黄南盆地内河流相、湖相沉积和中酸性火山岩发育,沉积总厚度达3000~6000m。古新世-渐新世末,黄海进入断陷发育阶段,古新世-始新世,湖相沉积占优势,渐新世沼泽沉积发育。中新世-第四纪南黄海转入区域性坳陷沉降,主要发育河流相沉积。  相似文献   

9.
中国中生代沉积盆地演化   总被引:1,自引:0,他引:1       下载免费PDF全文
在综合分析中生代早-中三叠世、晚三叠世-早白垩世、晚白垩世-白垩纪3个时段中国沉积盆地分布、充填序列、岩相古地理和构造古地理的基础上, 建立了中国中生代沉积盆地的时空演化, 并探讨了中国中生代沉积盆地的时空演化与中生代构造运动的响应关系, 认为: (1)随着亚洲洋俯冲消亡及天山-兴蒙造山系形成, 中国北方地区总体处于古亚洲洋消亡以后, 陆块汇聚碰撞背景, 西北地区盆山格局基本定型, 南部古特提斯洋的双向俯冲消减, 在北羌塘-三江多岛弧盆系中的一系列弧后洋盆相继俯冲消亡; (2)晚三叠世的"印支运动"使古亚洲陆最终固结并向外增生, 中国己经基本形成了南海北陆的分布格局, 绝大部分地区进入陆内演化阶段.印支期以后, 华南中部上隆, 隔开了西部的古地中海域和东部的古太平洋海域; (3)中侏罗世以来, 在古太平洋板块向欧亚大陆俯冲的影响下, 整个中国东部卷入滨太平洋构造域, 西太平洋型活动大陆边缘形成.中国东北大部分地区为弧内裂陷(火山沉积)盆地; 华北-阿拉善陆块东西分化, 中西部主要发育压陷盆地或断陷盆地或坳陷盆地, 东部则形成与古太平洋板块俯冲有关的陆缘岩浆弧弧内裂陷盆地; 华南则以雪峰山为界, 东部广泛发育与陆缘岩浆弧演化相关的弧内裂陷盆地, 西侧则发育陆内大型压陷盆地、断陷盆地或断坳盆地.中国西南则仍然为多岛洋弧盆系格局.   相似文献   

10.
右江盆地晚古生代-三叠纪盆地转换及其构造意义   总被引:11,自引:0,他引:11  
右江盆地是在南华加里东造山带夷平的基础上经再次裂陷形成的,它的形成与金沙江—红河—马江洋盆关系密切,是该洋盆与扬子板块之间的大陆边缘盆地。早泥盆世晚期—石炭纪随着金沙江—红河—马江洋盆的形成,扬子板块南部边缘开始裂陷,形成特殊的台地与台间海槽相间的大陆边缘裂谷盆地。二叠纪—早三叠世初期随着该洋盆的俯冲消减,形成越北岛弧,右江盆地进入弧后(裂陷)盆地阶段。早三叠世晚期以后,随着该洋盆的闭合和碰撞造山,在红河—马江造山带与扬子板块之间形成以复理石为特征的弧后前陆盆地。因此右江盆地经历了大陆边缘裂谷盆地(早泥盆世晚期—石炭纪)、弧后盆地(二叠纪—早三叠世早期)、弧后前陆盆地(早三叠世晚期—中三叠世)的构造演化阶段。  相似文献   

11.
南秦岭勉略地区“三河口群”的解体及地质意义   总被引:9,自引:3,他引:6  
“三河口群”分布于南秦岭西段、陕甘川交界的勉县—略阳—康县—文县临江—南坪塔藏一带,其南北均为断裂带限制。过去,“三河口群”的研究在史密斯地层学的理论指导下,整体时代认为是下、中泥盆统。在非史密斯地层学理论的指导下,对勉略带“三河口群”进行了解体,建立了该带的原地和异地地层系统。新的地层系统包括了从太古界到石炭系不同时代的地层,该地层系统揭示了南秦岭古海洋和大地构造演化过程:南秦岭晚震旦世—早寒武世为扬子板块的一部分,奥陶纪—志留纪时期沿南秦岭勉县—略阳—安康—随县(南)形成裂陷槽盆地,该盆地于中晚志留世有所萎缩但尚未完全关闭。泥盆纪时期该裂陷槽进一步开裂并形成有限洋盆,石炭纪洋盆出现向南的俯冲。该洋盆可能在二叠纪仍然存在,于印支期最终闭合。  相似文献   

12.
中国南方的滇黔桂地区,早古生代与晚古生代之交曾经发生过较为强烈的加里东运动,包括三个幕:寒武纪末期的郁南运动,中、奥陶世末期的都匀运动以及志留纪末期的广西运动;奥陶系与志留系的残留不全和晚奥陶世至志留纪大片古陆———滇黔桂古陆的展布是加里东运动的重要体现。志留纪末期的广西运动之后,在大致相当于早古生代“滇黔桂古陆”分布的地区形成一个特殊的“滇黔桂盆地”,而且在滇黔桂盆地的主体部位常常是泥盆系直接覆盖在寒武系之上。寒武系,特别是下寒武统,由于寒武纪初期的快速海侵作用而在研究区域普遍发育烃源岩系;研究区域的泥盆系,特别是中泥盆统,在台间盆地中发育优质烃源岩。因此,巨大的构造古地理演变和海陆变迁,形成了一个晚古生代的泥盆系优质烃源岩与早古生代的下寒武统优质烃源岩的空间叠合区域,该叠合区域的加里东运动不整合面上、下的储集体即成为该地区的深层油气勘探对象,预示着滇黔桂盆地的深层存在较大的油气勘探潜力。  相似文献   

13.
Seismic and drilling well data were used to examine the occurrence of multiple stratigraphic unconformities in the Tarim Basin, NW China. The Early Cambrian, the Late Ordovician and the late Middle Devonian unconformities constitute three important tectonic sequence boundaries within the Palaeozoic succession. In the Tazhong, Tabei, Tadong uplifts and the southwestern Tarim palaeo‐uplift, unconformities obviously belong to superimposed unconformities. A superimposed unconformity is formed by superimposition of unconformities of multiple periods. Areas where superimposed unconformities develop are shown as composite belts of multiple tectonic unconformities, and as higher uplift areas of palaeo‐uplifts in palaeogeomorphologic units. The contact relationship of unconformities in the lower uplift areas is indicative of truncation‐overlap. A slope belt is located below the uplift areas, and the main and secondary unconformities are characterized by local onlap reflection on seismic profiles. The regional dynamics controlled the palaeotectonic setting of the Palaeozoic rocks in the Tarim Basin and the origin and evolution of the basin constrained deposition. From the Sinian to the Cambrian, the Tarim landmass and its surrounding areas belonged to an extensional tectonic setting. Since the Late Ordovician, the neighbouring north Kunlun Ocean and Altyn Ocean was transformed from a spreading ocean basin to a closed compressional setting. The maximum compression was attained in the Late Ordovician. The formation of a tectonic palaeogeomorphologic evolution succession from a cratonic margin aulacogen depression to a peripheral foreland basin in the Early Caledonian cycle controlled the deposition of platform, platform margin, and deep‐water basin. Tectonic uplift during the Late Ordovician resulted in a shallower basin which was followed by substantial erosion. Subsequently, a cratonic depression and peripheral or back‐arc foreland basin began their development in the Silurian to Early–Middle Devonian interval. In this period, the Tabei Uplift, the Northern Depression and the southern Tarim palaeo‐uplift showed obvious control on depositional systems, including onshore slope, shelf and deep‐water basin. The southern Tarim Plate was in a continuous continental compressional setting after collision, whereas the southern Tianshan Ocean began to close in the Early Ordovician and was completely closed by the Middle Devonian. At the same time, further compression from peripheral tectonic units in the eastern and southern parts of the Tarim Basin led to the expansion of palaeo‐uplift in the Late Devonian–Early Carboniferous interval, and the connection of the Tabei Uplift and Tadong Uplift, thus controlling onshore, fluvial delta, clastic coast, lagoon‐bay and shallow marine deposition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Silurian sandstone in Tarim Basin has good reservoir properties and active oil and gas shows, especially thick widely-distributed bituminous sandstone. Currently, the Silurian was found containing both bitumen and conventional reservoirs, with petroleum originating from terrestrial and marine source rocks. The diversity of their distribution was the result of "three sources, three stages" accumulation and adjustment processes. "Three sources" refers to two sets of marine rocks in Cambrian and Middle-Upper Ordovician, and a set of terrestrial rock formed in Triassic in the Kuqa depression. "Three stages" represents three stages of accumulation, adjustment and reformation occurring in Late Caledonian, Late Hercynian and Late Himalayan, respectively. The study suggests that the Silurian bitumen is remnants of oil generated from Cambrian and Ordovician source rocks and accumulated in the sandstone reservoir during Late Caledonian-Early Hercynian and Late Hercynian stages, and then damaged by the subsequent two stages of tectonic uplift movements in Early Hercynian and Pre-Triassic. The authors presumed that the primary paleo-reservoirs formed during these two stages might be preserved in the Silurian in the southern deep part of the Tabei area. Except for the Yingmaili area where the Triassic terrestrial oil was from the Kuqa Depression during Late Himalayan Stage, all movable oil reservoirs originated from marine sources. They were secondary accumulations from underlying Ordovician after structure reverse during the Yanshan-Himalayan stage. Oil/gas shows mixed-source characteristics, and was mainly from Middle-Upper Ordovician. The complexity and diversity of the Silurian marine primary properties were just defined by these three stages of oil-gas charging and tectonic movements in the Tabei area.  相似文献   

15.
序言前陆盆地是由板块碰撞引起侧向挤压,进而形成冲断推覆体(thrust mass)加载于大陆边缘,使大陆地壳周缘前陆隆起(peripheral forebulge)形成的一种不对称盆地,它的一侧与发育周缘前陆隆起的克拉通大陆为邻,另一侧靠近冲断推覆体。靠近冲断推覆体侧的一端主要发育陆源碎屑沉积,而靠近克拉通大陆的一边则发育成为碳酸盐台地。由于碰撞后大陆岩石圈的持续俯冲,造成冲断推覆体跨过先前被动大陆边缘,进而向克拉通陆内迁移发展,致使碳酸盐台地最终全被陆源碎屑掩埋。最初,冲断推覆体位于海平面之下,随着冲断推覆体叠加而成山链,加载于大陆边缘薄的外部地壳之上,沿缝合线形成一个深而狭长的边缘海槽地,接受陆源泥和深海沉积物沉  相似文献   

16.
塔里木盆地古生代重要演化阶段的古构造格局与古地理演化   总被引:14,自引:4,他引:10  
塔里木盆地在古生代经历了中-晚奥陶世、晚奥陶世末、中泥盆世末等多个重要的盆地变革期,形成了多个重要的不整合,盆地构造古地理发生了重要的变化。中、晚奥陶世盆地的变革形成了由巴楚古斜坡-塔中隆起-和田河隆起构成的大型古隆起带、相对沉降的北部坳陷带以及由于挤压挠曲沉降形成的塘古孜巴斯坳陷带。中部古隆起带制约着晚奥陶世东窄西宽的弧立碳酸盐岩台地体系的发育,而开始形成于震旦纪的满加尔拗拉槽及东南侧的塘古孜巴斯坳陷接受了巨厚的中、晚奥陶世重力流沉积。奥陶纪末的盆地变革形成了北东东向展布的西南-东南缘和西北缘的强烈隆起带,总体的古构造地貌控制着早志留世北东东向展布的滨浅海陆源碎屑盆地的沉积格局。中泥盆纪世末期的盆地强烈隆升并遭受了夷平化的剥蚀作用,形成了大范围分布的角度不整合面,并以塔北隆起和塔东隆起的强烈抬升为显著特征。盆地古构造地貌从东低西高转为东高、西低,制约着晚泥盆和早石炭世由东向西南方向从滨岸到浅海的古地理分布。中、晚奥陶世主要不整合及其剥蚀量的分布反映出北昆仑向北碰撞和挤入是造成盆地南缘、东南缘及盆内隆起的主要原因。南天山洋的俯冲、碰撞在奥陶世末至早志留世已对盆地西北缘产生影响,导致塔北英买力隆起的抬升和遭受剥蚀。  相似文献   

17.
南秦岭勉略古缝合带非史密斯地层和古海洋新知   总被引:9,自引:3,他引:9  
南秦岭勉略古缝合带是一个构造混杂岩型非史密斯地层区,由不同时代的原地地层系统和异地地层系统的构造岩片构成。泥盆纪—石炭纪硅质岩的常量元素、稀土元素分析结果指示了勉略小洋盆的存在。区域背景分析表明晚震旦世到早寒武世,南秦岭为扬子板块北部边缘的一部分,中、晚寒武世以后开始分裂形成南秦岭裂陷槽。该海槽于中、晚志留世萎缩但未关闭,泥盆纪又进一步开裂逐渐形成大陆边缘裂谷盆地,晚泥盆世后期到早石炭世早期形成一开放小洋盆。早石炭世后期出现洋壳俯冲,从而转化为活动大陆边缘盆地。该洋盆可能持续到二叠纪,并于印支期最终关闭、碰撞和造山。  相似文献   

18.
《Comptes Rendus Geoscience》2008,340(2-3):139-150
The Qinling–Dabie Belt represents the boundary between the North and South China blocks (NCB, SCB, respectively), where ultrahigh-pressure (UHP) rocks are widespread. A structural study in eastern Qinling and zircon LA ICPMS dating of the migmatites that form the core of the Central Qinling Unit allows us to argue that continental collision occurred in the Silurian, before 400 Ma. In the Late Palaeozoic, from the Devonian to the Permian, the northern margin of SCB experienced a continental rifting. From the Late Permian to Middle Triassic, northward continental subduction of SCB is responsible for the development of a high-pressure metamorphism. The age of the UHP metamorphism remains unsettled yet. A two-time genesis, Early Palaeozoic and Early Triassic, is often preferred, but a single Palaeozoic age followed by a Triassic resetting cannot be ruled out.  相似文献   

19.
The northwestern corner of New South Wales consists of the paratectonic Late Proterozoic to Early Cambrian Adelaide Fold Belt and older rocks, which represent basement inliers in this fold belt. The rest of the state is built by the composite Late Proterozoic to Triassic Tasman Fold Belt System or Tasmanides.In New South Wales the Tasman Fold Belt System includes three fold belts: (1) the Late Proterozoic to Early Palaeozoic Kanmantoo Fold Belt; (2) the Early to Middle Palaeozoic Lachlan Fold Belt; and (3) the Early Palaeozoic to Triassic New England Fold Belt. The Late Palaeozoic to Triassic Sydney—Bowen Basin represents the foredeep of the New England Fold Belt.The Tasmanides developed in an active plate margin setting through the interaction of East Gondwanaland with the Ur-(Precambrian) and Palaeo-Pacific plates. The Tasmanides are characterized by a polyphase terrane accretion history: during the Late Proterozoic to Triassic the Tasmanides experienced three major episodes of terrane dispersal (Late Proterozoic—Cambrian, Silurian—Devonian, and Late Carboniferous—Permian) and six terrane accretionary events (Cambrian—Ordovician, Late Ordovician—Early Silurian, Middle Devonian, Carboniferous, Middle-Late Permian, and Triassic). The individual fold belts resulted from one or more accretionary events.The Kanmantoo Fold Belt has a very restricted range of mineralization and is characterized by stratabound copper deposits, whereas the Lachlan and New England Fold Belts have a great variety of metallogenic environments associated with both accretionary and dispersive tectonic episodes.The earliest deposits in the Lachlan Fold Belt are stratabound Cu and Mn deposits of Cambro-Ordovician age. In the Ordovician Cu deposits were formed in a volcanic are. In the Silurian porphyry Cu---Au deposits were formed during the late stages of development of the same volcanic are. Post-accretionary porphyry Cu---Au deposits were emplaced in the Early Devonian on the sites of the accreted volcanic arc. In the Middle to Late Silurian and Early Devonian a large number of base metal deposits originated as a result of rifting and felsic volcanism. In the Silurian and Early Devonian numerous Sn---W, Mo and base metal—Au granitoid related deposits were formed. A younger group of Mo---W and Sn deposits resulted from Early—Middle Carboniferous granitic plutonism in the eastern part of the Lachlan Fold Belt. In the Middle Devonian epithermal Au was associated with rifting and bimodal volcanism in the extreme eastern part of the Lachlan Fold Belt.In the New England Fold Belt pre-accretionary deposits comprise stratabound Cu and Mn deposits (pre-Early Devonian): stratabound Cu and Mn and ?exhalite Au deposits (Late Devonian to Early Carboniferous); and stratabound Cu, exhalite Au, and quartz—magnetite (?Late Carboniferous). S-type magmatism in the Late Carboniferous—Early Permian was responsible for vein Sn and possibly Au---As---Ag---Sb deposits. Volcanogenic base metals, when compared with the Lachlan Fold Belt, are only poorly represented, and were formed in the Early Permian. The metallogenesis of the New England Fold Belt is dominated by granitoid-related mineralization of Middle Permian to Triassic age, including Sn---W, Mo---W, and Au---Ag---As Sb deposits. Also in the Middle Permian epithermal Au---Ag mineralization was developed. During the above period of post-orogenic magmatism sizeable metahydrothermal Sb---Au(---W) and Au deposits were emplaced in major fracture and shear zones in central and eastern New England. The occurrence of antimony provides an additional distinguishing factor between the New England and Lachlan Fold Belts. In the New England Fold Belt antimony deposits are abundant whereas they are rare in the Lachlan Fold Belt. This may suggest fundamental crustal differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号