共查询到20条相似文献,搜索用时 83 毫秒
1.
Bijoy Thompson C. Gnanaseelan Anant Parekh P. S. Salvekar 《Journal of Earth System Science》2008,117(2):169-178
The variability in the long-term temperature and sea level over the north Indian Ocean during the period 1958–2000 has been
investigated using an Ocean General Circulation Model, Modular Ocean Model version 4. The model simulated fields are compared
with the sea level observations from tide-gauges, Topex/Poseidon (T/P) satellite, in situ temperature profile observations from WHOI moored buoy and sea surface temperature (SST) observations from DS1, DS3 and DS4
moored buoys. It is seen that the long (6–8 years) warming episodes in the SST over the north Indian Ocean are followed by
short episodes (2–3 years) of cooling. The model temperature and sea level anomaly over the north Indian Ocean show an increasing
trend in the study period. The model thermocline heat content per unit area shows a linear increasing trend (from 1958–2000)
at the rate of 0.0018 × 1011 J/m2 per year for north Indian Ocean. North Indian Ocean sea level anomaly (thermosteric component) also shows a linear increasing
trend of 0.31 mm/year during 1958–2000. 相似文献
2.
3.
Neogene deep sea benthic foraminiferal diversity in the Indian Ocean: Paleoceanographic implications
The species diversity indices, as defined by the number of species,S; Shannon-Wiener index,H(S) and Buzas-Gibson index,É, of DSDP sites 219, 220, 237 and 238 were measured to determine the benthic foraminiferal diversity patterns in the Indian Ocean deep sea sequences during the Neogene. The Time-Stability hypothesis could satisfactorily explain the observed diversity patterns. The general patterns of diversity suggest environmental stability during the Neogene. However, few small fluctuations in diversity during the Middle Miocene (c.14·8 Ma), Late Miocene (c.6·0 Ma) and Late Pliocene (c.2·0 Ma) may possibly be the effects of Antarctic Bottom Water (AABW) activity in this region. The benthic foraminiferal diversity in the tropical Indian Ocean is more than the high latitudinal areas with comparable depths. 相似文献
4.
大洋钻探工程” 1 2 5航次的 782 A钻孔位于西太平洋菲律宾海东北部 ,井深 4 76.8m。基底为安山岩 ,上覆盖层为中始新统—更新统的沉积层 ,其中保存有低丰度的有孔虫。自下而上可划分出 8个浮游有孔虫带。由于出现 Catapsydrax dissimilis,C.stainforthi为 N5 、N6 带的带化石 ,表明本钻孔存在早中新世的地层。同时由于缺失浮游有孔虫带 P1 5 — P1 6 下部 ,N3上部—N4,N7—N1 1 带的带化石 ,说明在中始新世与晚始新世之间、晚渐新世与早中新世之间、早中新世与中中新世之间存在 3个沉积间断。钻孔中的有孔虫标志本区当时处于温暖亚热带环境。根据不同时期温度的变化 ,可划分出 5个阶段 ,包括 3个偏暖时期和 2个温凉时期。 相似文献
5.
探讨了南印度洋海区总有机磷(TOP)、总有机氮(TON)以及溶解无机营养盐的分布规律。分析结果表明:研究海区内溶解无机营养盐受水体中生物活动和物理过程的综合影响,表层水体由于生物活动的消耗,其磷酸盐等无机营养元素的含量一般是采样水深范围内最低的;中深层水体由于生物活动的降低以及有机质矿化作用的影响,无机营养元素的变化范围较小。表层水体中TOP和TON含量占TP和TN的主要部分,说明表层水体中的氮和磷主要以有机态形式存在,且沿着37.8°S从西向东,TOP和TON的含量以及TOP/TP和TON/TN的比值呈降低的趋势。研究海区叶绿素a的分析结果表明,初级生产力的变化可能是控制研究海区TON和TOP空间分布的主要因素。不同形态氮、磷营养元素的相关分析表明,有机营养盐和无机营养盐之间互为补充,且表层水体中有机氮和磷是水体初级生产所需营养盐的重要来源,总氮、总磷的关系表明研究区初级生产力并不受氮、磷的限制。 相似文献
6.
The warm pool in the Indian Ocean 总被引:2,自引:0,他引:2
The structure of the warm pool (region with temperature greater than 28°C) in the equatorial Indian Ocean is examined and
compared with its counterpart in the Pacific Ocean using the climatology of Levitus. Though the Pacific warm pool is larger
and warmer, a peculiarity of the pool in the Indian Ocean is its seasonal variation. The surface area of the pool changes
from 24 × 106 km2 in April to 8 × 106 km2 in September due to interaction with the southwest monsoon. The annual cycles of sea surface temperature at locations covered
by the pool during at least a part of the year show the following modes: (i) a cycle with no significant variation (observed
in the western equatorial Pacific and central and eastern equatorial Indian Ocean), (ii) a single maximum/minimum (northern
and southern part of the Pacific warm pool and the south Indian Ocean), (iii) two maxima/minima (Arabian Sea, western equatorial
Indian Ocean and southern Bay of Bengal), and (iv) a rapid rise, a steady phase and a rapid fall (northern Bay of Bengal). 相似文献
7.
冀北晚更新世地层划分为迁安组与马兰组。迁安组形成于整个晚更新世 ,以河流相沉积为主 ,早期为温暖气候环境 ,晚期为寒冷气候环境 ,可划分为两个生物组合类型。马兰组形成于晚更新世晚期 ,为寒冷干旱气候环境下多种成因形成的一套堆积物 相似文献
8.
M. Cobianchi V. Luciani C. Lupi N. Mancin F. Lirer N. Pelosi I. Trattenero M. Bordiga I. R. Hall M. Sprovieri 《第四纪科学杂志》2012,27(5):519-530
Through a multidisciplinary approach based on novel micropaleontological and geochemical analyses, the main paleoceanographic and paleoclimate changes that have influenced the surface‐ and deep‐water circulation in the SW Pacific Ocean (Chatham Rise, eastern New Zealand) during the last million years are reconstructed. This region represents a key area for investigating the climate evolution during the Pleistocene because here the largely wind‐driven Antarctic Circumpolar Current interacts with the west Pacific Ocean circulation via the Deep Western Boundary Current, the major source of deep water for the whole Pacific Ocean. To understand coupling or decoupling events between sea surface and bottom waters, a continuous marine sedimentary succession since 1.1 Ma, recovered by the IMAGES (International Marine Past Global Change Study) cruise in the SW Pacific Ocean (Core MD97‐2114), has been investigated based on calcareous planktonic and benthic microfossil content and C and O isotope record performed on planktonic and benthic foraminiferal tests. Results show the occurrence of long‐ and short‐term patterns of climate and ocean circulation in the last million years as the result of the interplay of ice‐sheet dynamics, surface tropical versus polar water inflow, and trophic status of the surface water. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
The study of seamount parameters in the tectonically most-complicated and least-understood Indian Ocean assumes importance
since their properties vary as a function of tectonic setting, physics of lithosphere, conduit geometry and chemical composition
of magma. More than 100 such seamounts ranging in summit height (h) from 300 to 2870 m, are indentified in the oceanic crust between Indian continent and Mid-Indian Ridge (MIR) and South-East
Indian Ridge (SEIR). Most of the minor seamounts (h > 1000) are found in the southern part of the study area. Major seamounts (h < 1000 m) are roughly distributed in two groups—the northern group on Cretaceous Oceanic Crust and southern group on Pliocene-Miocene
Oceanic Crust. On an average northern group seamounts (SM 1 to 6) are taller, wider and flatter than those from the southern
group. These seamounts appear to be the result of continuous growth from tapped, moving magma chamber while stress depleted
magma and inconsistent Indian Plate movement during Mid-Tertiary are attributed to the origin of southern group of smaller
seamounts. Distribution and morphology of seamounts as a whole indicate their formation either from Reunion hotspot or from
two separate hotspots in the geological past. 相似文献
10.
This study attempts to analyse paleoceanographic changes in the Central Indian Ocean (Deep Sea Drilling Project Site 237), linked to monsoon variability as well as deep-sea circulation during the Plio-Pleistocene. We used factor and cluster analyses of census data of the 34 most dominant species of benthic foraminifera that enabled us to identify five biofacies: Astrononion umbilicatulum–Uvigerina proboscidea (Au–Up), Pullenia bulloides–Bulimina striata (Pb–Bs), Globocassidulina tumida–Nuttallides umbonifera (Gt–Nu), Gyroidinoides nitidula–Cibicides wuellerstorfi (Gn–Cw) and Cassidulina carinata–Cassidulina laevigata (Cc–Cl) biofacies. Knowledge of the environmental preferences of modern deep-sea benthic foraminifera helped to interpret the results of factor and cluster analyses in combination with oxygen and carbon isotope values. The biofacies indicative of high surface productivity, resulting from a stronger South Equatorial Current (Au–Up and Pb–Bs biofacies), dominate the early Pliocene interval (5.6–4.5 Ma) of global warmth. An intense Indo-Pacific ‘biogenic bloom’ and strong Oxygen Minimum Zone extended to intermediate depths (1000–2000 m) over large parts of the Indian Ocean in the early Pliocene. Since 4.5 Ma, the food supply in the Central Indian Ocean dropped and fluctuated while deep waters were corrosive (biofacies Gt–Nu, Gn–Cw). The Pleistocene interval is characterized by an intermediate flux of organic matter (Cc–Cl biofacies). 相似文献
11.
On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall 总被引:3,自引:0,他引:3
The relative impacts of the ENSO and Indian Ocean dipole (IOD) events on Indian summer (June–September) monsoon rainfall at
sub-regional scales have been examined in this study. GISST datasets from 1958 to 1998, along with Willmott and Matsuura gridded
rainfall data, all India summer monsoon rainfall data, and homogeneous and sub-regional Indian rainfall datasets were used.
The spatial distribution of partial correlations between the IOD and summer rainfall over India indicates a significant impact
on rainfall along the monsoon trough regions, parts of the southwest coastal regions of India, and also over Pakistan, Afghanistan,
and Iran. ENSO events have a wider impact, although opposite in nature over the monsoon trough region to that of IOD events.
The ENSO (IOD) index is negatively (positively) correlated (significant at the 95% confidence level from a two-tailed Student
t-test) with summer monsoon rainfall over seven (four) of the eight homogeneous rainfall zones of India. During summer, ENSO
events also cause drought over northern Sri Lanka, whereas the IOD events cause surplus rainfall in its south. On monthly
scales, the ENSO and IOD events have significant impacts on many parts of India. In general, the magnitude of ENSO-related
correlations is greater than those related to the IOD. The monthly-stratified IOD variability during each of the months from
July to September has a significant impact on Indian summer monsoon rainfall variability over different parts of India, confirming
that strong IOD events indeed affect the Indian summer monsoon.
相似文献
Karumuri AshokEmail: |
12.
The net influx of the circumpolar water on the western (approximately along 10°E) and eastern (approximately 115°E) boundaries
of the Indian Ocean, adopting the method of Montgomery and Stroup is computed on bivariate distribution of potential thermosteric
anomaly and salinity to identify the characteristics of the flux. The zonal flux at both the boundaries indicates an alternate
strong easterly and westerly flow between 36°S and 45°S, south of which the flow is mainly easterly but weak up to 56°S. At
the western boundary the easterly flow is 146 Sv and westerly is 98.07 Sv, while at the eastern boundary (115°E) the corresponding
fluxes are 123.46 Sv and 27.20 Sv respectively, indicating a net outflux of 48.33 Sv. This water should have been accounted
by the melting of ice and influx of the Equatorial Pacific Ocean Water. 相似文献
13.
Paul M. Saager 《Journal of Earth System Science》1994,103(2):237-278
The present review deals with the distributions of dissolved trace metals in the Indian Ocean in relation with biological,
chemical and hydrographic processes. The literature data-base is extremely limited and almost no information is available
on particle processes and input and output processes of trace metals in the Indian Ocean basin and therefore much research
is needed to expand our understanding of the marine chemistries of most trace metals. An area of special interest for future
research is the Arabian Sea. The local conditions (upwelling induced productivity, restricted bottom water circulation and
suboxic intermediate waters) create a natural laboratory for studying trace metal chemistry. 相似文献
14.
The Central Indian Ocean Basin (CIOB) basalts are plagioclase-rich, while olivine and pyroxene are very few. The analyses of 41 samples reveal high FeOT (~10–18 wt%) and TiO2 (~1.4–2.7 wt%) indicating a ferrobasaltic composition. The basalts have high incompatible elements (Zr 63–228 ppm; Nb ~1–5 ppm; Ba ~15–78 ppm; La ~3–16 ppm), a similar U/Pb (0.02–0.4) ratio as the normal mid-oceanic basalt (0.16±0.07) but the Ba/Nb (12.5–53) ratio is much larger than that of the normal mid-oceanic ridge basalt (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have a significant negative Eu anomaly (Eu/Eu*=0.78–1.00) that may have been a result of the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallization together with low partial melting of a shallow seated magma. 相似文献
15.
The Penninic Ocean was a side tract of the Central Atlantic Oceanic System intercalated between the European and the Austroalpine plates. Its closure started in the Early Cretaceous, as subduction of the oceanic crust beyond the Austroalpine plate. The sedimentary change on the Austroalpine shelf from pelagic carbonates into deep-water siliciclastics correlated with the denudation of the accretionary wedge resulting from that subduction. Within the Bajuvaric Unit of the Upper Austroalpine, this transition is reflected by the lithostratigraphic boundary between the older Schrambach and the younger Tannheim Formation. This boundary is well exposed in a newly discovered site at Sittendorf, southwest of Vienna. This new outcrop yields an extraordinarily rich planktonic foraminifera assemblage characterized by typical Aptian species belonging to Blowiella, Globigerinelloides, Hedbergella, Leupoldina, and Praehedbergella. A detailed biostratigraphic analysis based on thin-section investigations precisely dated the lithostratigraphic boundary within the lower part of the early Aptian Leupoldina cabri Acme Zone, having an approximate age of 123 Ma. Along with the biostratigraphic analyses, the gamma-log outcrop measurement was a powerful tool in interpreting the stratigraphy and the tectonic setting in the outcrop, which intersects one smaller-scale isoclinal fold. 相似文献
16.
Planktonic foraminiferal assemblages have been examined in 25 trigger core top samples and 51 piston core top samples collected between latitudes 28° S and 55° S and longitudes 79° E and 120° E from the southern Indian Ocean during cruises of the U.S.N.S. Eltanin. Samples taken from water depths exceeding 4000 m and/or showing evidence of calcium carbonate dissolution were eliminated from further analysis. The final piston core data set consists of 34 samples; the trigger core data set containing 21 samples. A close relationship exists between changes in the planktonic foraminiferal assemblages in the surface sediments and surface water temperatures. Species diversity values were computed for each of the core top assemblages using the Shannon-Wiener Index and the Brillouin Index, each of which takes into consideration the number of species and the proportionment of individuals among the species. The Shannon and Brillouin diversity values for all samples are positively correlated (correlation coefficient (r) = +.999). Regression analysis of latitude versus Shannon diversity values in the trigger core samples clearly shows a decrease in diversity with increasing latitude (r = ?.979). Furthermore, a strong correlation (r = +.977) exists between decreasing species diversity (Shannon) and decreasing average summer-winter temperature of the overlying surface waters. A paleotemperature equation derived from the relationship of diversity in trigger core samples and surface water temperature was used to generate paleotemperature curves for five trigger cores and a 6 m piston core of Late Pleistocene age, located beneath the present position of the Subtropical Convergence. A 7–8° C temperature range is suggested between the interglacial and glacial episodes in this Late Pleistocene sequence, and probably reflects latitudinal shifts of the Subtropical Convergence and Australasian Front during the Late Pleistocene. 相似文献
17.
Deep-sea sediments in parts of the Pacific Ocean were recently found to contain remarkably high concentrations of rare-earth elements and yttrium (REY) of possible economic significance. Here we report similar REY-rich mud in a core section from Deep Sea Drilling Project Site 213 in the eastern Indian Ocean. The sediments consist mainly of siliceous ooze, with subordinate zeolitic clay that contains relatively high REY concentrations. The maximum and average total REY (ΣREY) contents of this material are 1113 and 629 ppm, respectively, which are comparable to those reported from the Pacific Ocean. The REY-rich mud at Site 213 shows enrichment in heavy rare-earth elements, negative Ce anomalies, and relatively low Fe2O3/ΣREY ratios, similar to those in the Pacific Ocean. In addition, the major-element composition of the Indian Ocean REY-rich mud indicates slight enrichment in lithogenic components, which probably reflects a contribution from southern African eolian dust. A volcaniclastic component from neighboring mid-ocean ridges or intraplate volcanoes is also apparent. Elemental compositions and X-ray diffraction patterns for bulk sediment, and microscopic observation and elemental mapping of a polished thin section, demonstrate the presence of phillipsite and biogenic apatite, such as fish debris, in the REY-rich mud. The strong correlation between total REY content and apatite abundance implies that apatite plays an important role as a host phase of REY in the present deep-sea sediment column. However, positive correlations between ΣREY and elements not present in apatite (e.g., Fe2O3, MnO, and TiO2) imply that the REY-rich mud is not formed by a simple mixture of REY-enriched apatite and other components. 相似文献
18.
A coupled physical-biological-chemical model has been developed at C-MMACS. for studying the time-variation of primary productivity
and air-sea carbon-dioxide exchange in the Indian Ocean. The physical model is based on the Modular Ocean Model, Version 2
(MOM2) and the biological model describes the nonlinear dynamics of a 7-component marine ecosystem. The chemical model includes
dynamical equation for the evolution of dissolved inorganic carbon and total alkalinity. The interaction between the biological
and chemical model is through the Redfield ratio. The partial pressure of carbon dioxide (pCO2) of the surface layer is obtained from the chemical equilibrium equations of Penget al 1987. Transfer coefficients for air-sea exchange of CO2 are computed dynamically based on the wind speeds. The coupled model reproduces the high productivity observed in the Arabian
Sea off the Somali and Omani coasts during the Southwest (SW) monsoon. The entire Arabian Sea is an outgassing region for
CO2 in spite of high productivity with transfer rates as high as 80 m-mol C/m2 /day during SW monsoon near the Somali Coast on account of strong winds. 相似文献
19.
This study focused on planktic foraminifera in plankton tows and surface sediments from the western Indian sector of Southern Ocean in order to evaluate the potential foraminiferal secondary calcification and/or dissolution in the sediment. It is found that the symbiotic foraminiferal species are abundant in the subtropical region, whereas non-symbiotic species dominate in the sub-Antarctic and polar frontal regions. The distribution of the symbiotic and non-symbiotic foraminiferal species is controlled by temperature, salinity, light, nutrients and phytoplankton biomass. There is also a lateral southern extent in abundance of planktic foraminifera from surface sediments to plankton tows. The shell weights of the planktic foraminifera N. pachyderma, G. bulloides and G. ruber within the surface sediments are on an average heavier by 27%, 34% and 40% respectively than shells of the same size within the plankton tows, indicative of secondary calcification. The planktic foraminiferal isotopes show the presence of heavier isotopes in the surface sediment foraminifera as compared to plankton tows, thus confirming secondary calcification. Secondary calcification in G. ruber occurs in the euphotic zone, whereas in case of N. pachyderma and G. bulloides it is at deeper depths. We also observed a decrease in the shell spines in surface sediment foraminifera as compared to plankton tows, indicative of the morphological changes that foraminifera underwent during gametogenesis. 相似文献
20.
Sridhar D. Iyer M. Sudhakar P. Das 《《地质学报》英文版》2007,81(5):756-770
We examined more than fifty indurated sediments recovered from the Central Indian Ocean Basin (CIOB) during the course of collection for manganese nodules and crusts. The samples occur as slabs either over which ferromanganese oxides are present or over a substrate of altered oceanic basalt in conjunction with palagonite or within the nucleus of manganese nodules. Mineralogically and compositionally, the samples show a mixture of phillipsite, palagonite and montmorillonite. We suggest that the volcanogenic precursors occurring in the CIOB were subjected to varying degrees of alteration under the influence of low temperature conditions, resulting in the formation of zeolitic claystones. The CIOB samples have similarities to those reported from various sites in the world oceans. 相似文献